
ibm.com/redbooks

Front cover

Systems Programmer’s 
Guide to Resource Recovery 
Services (RRS)

Paola Bari
Frank Kyne

Alan Murphy

Managing, optimizing, and sizing RRS 
environments

Restart and recovery with RRS

How exploiters can get the 
most out of RRS

 

 

 

 

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/


 

 

 

 



International Technical Support Organization

Systems Programmer’s Guide to Resource Recovery 
Services (RRS)  

November 2004

SG24-6980-00

 

 

 

 



© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (November 2004)

This edition applies to Version 1, Release 4 of z/OS (product number 5694-A01, 5655-G52).

Note: Before using this information and the product it supports, read the information in “Notices” on 
page vii.

 

 

 

 



 

Contents

Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Trademarks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
The team that wrote this redbook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Become a published author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x
Comments welcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x

Part 1.  Resource Recovery Services (RRS) introduction and concepts . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1.  Introduction to Resource Recovery Services (RRS) . . . . . . . . . . . . . . . . . . . 3
1.1  Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2  Resource managers and protected resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3  The role of Resource Recovery Services (RRS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1  Who uses RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2.  Two-phase commit and RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1  Introduction to two-phase commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2  Two-phase commit as supported by legacy resource managers  . . . . . . . . . . . . . . . . . 13

2.2.1  CICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2  IMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3  DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3  How RRS works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1  Registration services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2  Context services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3  RRS invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4  How two-phase commit works with RRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5  Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 3.  Distributed RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1  Distributed two-phase commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1  RRS distributed syncpoint support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2  Multisystem cascaded transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Part 2.  Implementing and managing RRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4.  Implementing RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1  RRS Implementation overview and planning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2  Define the logging environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1  RRS logging group name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2  Log stream characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3  RRS log stream structure sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4  Define the RRS log streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3  Define the RRS infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1  WLM definitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2  RRS subsystem definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3  Define RRS procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.4  RRS automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.5  Define RRS panels to ISPF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.6  Define RRS SAF authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. iii



 

4.3.7  Define RRS component trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5.  RRS operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1  Starting RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1  RRS warm start. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2  RRS cold start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2  Stopping RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3  Using RRS panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 6.  RRS performance and availability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1  Availability considerations for RRS log streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2  Performance considerations of RRS log streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.1  RRS performance monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 7.  RRS restart and recovery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1  RRS restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.1  RRS log takeover  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2  Resource manager restart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2.1  Resource manager startup sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.2  Resource Manager restart restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2.3  Example of resource manager restart within the same RRS logging group . . . . . 66
7.2.4  Example of resource manager restart outside the same RRS logging group . . . . 66
7.2.5  Sample DB2/MQ restart scenario with RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Part 3.  RRS exploiters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 8.  WebSphere Application Server for z/OS  . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.2  J2EE terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
8.3  RRS exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4  Connectors for JDBC, JMS and JCA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.4.1  IMS connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.4.2  CICS connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.4.3  DB2 connector  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.4.4  WebSphere MQ connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4.5  Connector summary table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4.6  RRS versus XA resource adapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.5  Restart and recovery issues with RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.5.1  RRS failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.5.2  Failure and restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.5.3  Peer restart and recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.6  Example scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.6.1  Application updating CICS and IMS using RRS connectors . . . . . . . . . . . . . . . . . 88
8.6.2  Application updating CICS and IMS with RRS and XA connectors  . . . . . . . . . . . 89
8.6.3  Application backout updating CICS and IMS with RRS and XA connectors. . . . . 91

Chapter 9.  DB2 for z/OS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.1  DB2 RRS requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

9.1.1  DB2 RRS Attach facility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.1.2  DB2 Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.1.3  DB2 JDBC/SQLJ driver for OS/390  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.1.4  DB2 Universal JDBC/SQLJ driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.2  DB2 restart and recovery with RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.2.1  DB2 restart if RRS is unavailable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

 

 

 

iv Systems Programmer’s Guide to RRS



 

9.2.2  DB2 restart on another system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3  Sample scenarios for DB2 using RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.3.1  Normal commit processing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 10.  CICS Transaction Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.1  CICS RRS requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.1.1  Working in CICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10.1.2  Connecting to CICS via EXCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.2  CICS restart and recovery with RRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2.1  RRS failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2.2  CICS restart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.2.3  Operator commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.2.4  CICS example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Chapter 11.  IMS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.1  How IMS/ESA exploits RRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.2  Connecting to IMS/ESA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.2.1  ODBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.2.2  APPC/IMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.2.3  OTMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.3  IMS/ESA restart and recovery with RRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.3.1  RRS failure while IMS is active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.3.2  IMS restart when RRS is not available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.3.3  IMS restart when RRS has been cold-started. . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.3.4  IMS restart on a different system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

11.4  IMS/ESA sample scenario using RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 12.  WebSphere MQ for z/OS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
12.1  WebSphere MQ RRS requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.1.1  WebSphere MQ and DB2 stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 130
12.1.2  WebSphere MQ JMS interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

12.2  WebSphere MQ restart and recovery issue with RRS  . . . . . . . . . . . . . . . . . . . . . . . 131
12.2.1  RRS failure when MQ is running. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
12.2.2  WebSphere MQ restart if RRS is unavailable . . . . . . . . . . . . . . . . . . . . . . . . . . 132
12.2.3  WebSphere MQ restart on another system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

12.3  Sample scenarios for WebSphere MQ using RRS . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.3.1  Normal commit processing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Chapter 13.  APPC/MVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
13.1  APPC/MVS RRS requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13.1.1  Transaction flow using APPC/MVS protected conversations . . . . . . . . . . . . . . 139
13.1.2  APPC/MVS system requirements for protected conversations. . . . . . . . . . . . . 139
13.1.3  Managing APPC/MVS resources for protected conversations . . . . . . . . . . . . . 139

13.2  APPC/MVS application restart and recovery with RRS. . . . . . . . . . . . . . . . . . . . . . . 139
13.2.1  RRS failure while the APPC/MVS application is active. . . . . . . . . . . . . . . . . . . 140

13.3  APPC/MVS sample scenario with RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 14.  DFSMStvs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.1  DFSMtvs features that exploit RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

14.1.1  Resource recovery participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
14.1.2  Commit flow with DFSMStvs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
14.1.3  Backout flow with DFSMStvs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
14.1.4  Handling of undo records when in-doubt with DFSMStvs. . . . . . . . . . . . . . . . . 148
14.1.5  Handling long-running units of recovery with DFSMStvs  . . . . . . . . . . . . . . . . . 149

 

 

 

 Contents v



 

14.2  TVS restart and recovery with RRS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
14.2.1  RRS failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
14.2.2  DFSMStvs restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.2.3  DFSMStvs peer restart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
14.2.4  Operator commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

14.3  DFSMStvs examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Related publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Other publications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

 

 

 

vi Systems Programmer’s Guide to RRS



 

Notices

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in other countries. Consult 
your local IBM representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, 
program, or service may be used. Any functionally equivalent product, program, or service that does not 
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to 
evaluate and verify the operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter described in this document. The 
furnishing of this document does not give you any license to these patents. You can send license inquiries, in 
writing, to: 
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are 
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made 
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make 
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time 
without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any 
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the 
materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring 
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published 
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the 
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the 
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them 
as completely as possible, the examples include the names of individuals, companies, brands, and products. 
All of these names are fictitious and any similarity to the names and addresses used by an actual business 
enterprise is entirely coincidental. 

COPYRIGHT LICENSE: 
This information contains sample application programs in source language, which illustrates programming 
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in 
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application 
programs conforming to the application programming interface for the operating platform for which the sample 
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, 
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and 
distribute these sample programs in any form without payment to IBM for the purposes of developing, using, 
marketing, or distributing application programs conforming to IBM's application programming interfaces. 

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. vii



 

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States, 
other countries, or both: 

Redbooks (logo) ™
z/OS®
zSeries®
CICS®
Distributed Relational Database 

Architecture™
DB2®
DRDA®

IBM®
IMS™
IMS/ESA®
Language Environment®
MQSeries®
MVS™
OS/390®
Parallel Sysplex®

Redbooks™
RACF®
RMF™
S/390®
VTAM®
WebSphere®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its 
affiliates.

EJB, Java, JDBC, J2EE, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the 
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

 

 

 

viii Systems Programmer’s Guide to RRS



 

Preface

This IBM® Redbook gives you a broad understanding of the Resource Recovery Services 
(RRS) environment. RRS provides a global syncpoint manager that any resource manager on 
z/OS® can exploit. It enables transactions to update protected resources managed by many 
resource managers.

RRS is increasingly becoming a prerequisite for new resource managers, and for new 
capabilities in existing resource managers. Rather than having to implement their own 
two-phase commit protocol, these products can use the support provided by RRS. 

Since older transaction managers like CICS® already offered many of the benefits of RRS for 
processing their own data, not many people rushed to exploit RRS when it was first 
introduced. However, as more transaction managers have become RRS resource managers, 
and as the complexity of the exchanges of transactional data increases, more and more 
systems and application programmers will need to use RRS. 

This redbook provides information that will help you install, tailor, and manage the RRS 
environment. It covers RRS exploiters, helping you to understand the connections between 
RRS and its exploiters and how they work together, as well as how the installation should 
behave in recovery and restart situations.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world working at the 
International Technical Support Organization, Poughkeepsie Center.

Paola Bari is an Advisory Programmer at the International Technical Support Organization, 
Poughkeepsie Center. She has 20 years of experience as a Systems Programmer in 
OS/390®, z/OS and Parallel Sysplex®, and several years of experience in WebSphere® 
MQSeries® and WebSphere Application Server. 

Frank Kyne is a Senior IT Specialist at the International Support Organization, Poughkeepsie 
Center. He writes extensively and teaches IBM classes worldwide in all areas of Parallel 
Sysplex. Before joining the ITSO, Frank worked in IBM Global Services in Ireland as an 
MVS™ Systems Programmer.

Alan Murphy is a Senior IT Specialist working for IBM Global Services in Ireland. He has 18 
years of systems programming experience on the zSeries® and S/390® platforms. He is 
co-author of a number of previous IBM Redbooks™ on Parallel Sysplex.

Thanks to the following people for their contributions to this project:

Stephen Anania
IBM Poughkeepsie

Juliet Candee
IBM Poughkeepsie

Mitch Johnson
IBM zSeries Services

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. ix



 

Rick Kready
IBM Poughkeepsie

Matthew Sykes
IBM Poughkeepsie

Tamas Vilaghy
IBM International Technical Support Organization, Poughkeepsie Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with 
specific products or solutions, while getting hands-on experience with leading-edge 
technologies. You'll team with IBM technical professionals, Business Partners and/or 
customers. 

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, 
you'll develop a network of contacts in IBM development labs, and increase your productivity 
and marketability. 

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or 
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ  Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 

 

 

x Systems Programmer’s Guide to RRS

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html


 

Part 1 Resource 
Recovery Services 
(RRS) introduction 
and concepts

In this part we introduce Resource Recovery Services (RRS) and discuss concepts such as 
transactions, resource managers, and two-phase commit, that you need to understand before 
implemeting RRS.

Part 1
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 1



 

 

 

 

2 Systems Programmer’s Guide to RRS



 

Chapter 1. Introduction to Resource 
Recovery Services (RRS) 

In this chapter, we introduce concepts required to understand Resource Recovery Services 
(RRS). We also describe what RRS is, and why it is needed in a transactional environment.

This chapter covers the following topics:

� “Resource managers and protected resources” on page 5

� “The role of Resource Recovery Services (RRS)” on page 6

1
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 3



 

1.1  Transactions
How times have changed. Not that long ago tie-dyed jeans were in fashion—and a 
“complicated” application was a batch job that used both IMS™ and VSAM within the same 
job! Today, a reasonably complex application is one that verifies a user’s identity using digital 
certificates; links to a WebSphere application that integrates CICS transactions, IMS 
transactions, and DB2® stored procedures spread across four separate enterprises; and 
sends multimedia files and a digital receipt back to the user at his Internet screen. And all of 
this within a single unit of recovery! 

Sound outlandish? Well consider that the user is a customer sitting at home using the Internet 
to book a vacation. Having selected the flights, hotel, and car, the user decides to book it. 
This will initiate a transaction to confirm the user’s identify, update the airline’s system with 
the reservation, update the hotel’s system to book the room, update the car rental company’s 
system to book the car, debit the user’s bank account with the cost of the package, and finally 
send the user a multimedia file containing information about the package, along with a receipt 
for the transaction. Figure 1-1 illustrates this transaction.

Figure 1-1   Overview of the sample vacation booking transaction

The most important point of this transaction is that all processing must be handled as one 
atomic transaction. The customer will not be satisfied if the hotel and car are booked and the 
money withdrawn—but the flights are not booked! So either every part of the transaction must 

this           day of                         , 199   ,

by                                                                                        

AA
WARD

WARD CC
ERTIFICATE

ERTIFICATE

P
P

RESENTED TO:
RESENTED TO:

We appreciate your contributions to our organization. In 
recognition of valuable achievements and hard work, we 

gladly present this certificate of award.

Type name here

Type name here

 

 

 

4 Systems Programmer’s Guide to RRS



 

occur, or none of it should occur. Meeting the challenge of this new paradigm in a S/390 
environment is the focus of this IBM Redbook.

The consitituent parts of a modern transaction are changing and growing in number. The 
traditional transaction managers CICS and IMS are still important and will continue to play a 
critical role in the new environment. However, there will also be many new components, such 
as WebSphere MQ, Websphere Application Server and many more.

In this redbook, we describe what options are available in building transactions that more 
accurately reflect your actual business processes and the interactions between your 
company and those it does business with. First, however, we need to define the term 
transaction as used here.

1.2  Resource managers and protected resources
Applications need to access resources in a manner that guarantees integrity. An application 
must be sure that changes to data have been either made or backed out. To enable this to 
happen, applications usually access resources via resource managers. 

Definition of a transaction: 

We define a transaction as consisting of all activity from the start of a task until the 
initiating program requests that all changes are either committed or backed out. This differs 
from the way many people use the term “transaction”, where there may be a number of 
independent commits or backouts made within the one task. In this publication we will use 
the term “work request” when referring to an interaction that may consist of more than one 
unit of recovery. 

To be a transaction, a work request must have the following properties:

Atomic A transaction is known as atomic when an application changes data 
in multiple resource managers as a single transaction, and all of 
those changes are accomplished through a single commit request 
by a syncpoint manager. If the transaction is successful, all the 
changes are commited. If any piece of the transation is not 
successful, then all changes are backed out. An atomic instant 
occurs when the syncpoint manager in a two-phase commit 
process logs a commit record for the transaction.

Consistent Applications involved in the transaction must be written to a 
standard that ensures consistency. If the application is correctly 
designed, then the transaction should maintain a consistent view of 
data.

Isolated The database managers involved in the transaction isolate the 
updates to their data so that only the application changing the data 
knows about the individual updates until the transaction is 
complete.

Durable Database managers involved in the transaction ensure the data is 
persistent, both before and after the transaction, regardless of 
success or failure.

Based on the first letter of each property, this type of transaction is often referred to as an 
ACID transaction.

 

 

 

Chapter 1. Introduction to Resource Recovery Services (RRS) 5



 

A data resource manager such as DB2 handles tasks like data access, locking and 
serialization, commit or rollback processing, and restart and recovery. DB2 data is referred to 
as a protected or recoverable resource. A protected resource is a resource that can be 
updated in a manner that conforms to the requirements of an ACID transaction. A protected 
resource need not be just a piece of data in a DB2 or IMS database, it can by any resource 
that can be changed during the process of a transaction. 

Resource managers must provide the following functions to ensure that the resources they 
manage can be considered protected resources:

� Locking functions, to ensure that changes to protected resources not yet committed by a 
transaction can only be seen by that transaction 

� Logging functions, to ensure that before and after images of changed resources are held 
in order to allow the changes to be backed out, or in order for restart processing to reapply 
changes in the event of system failure

As previously noted, there must be a syncpoint manager that logs the application change 
request and makes a decision as to whether the resource managers should commit or back 
out any changes to protected resources. This process is referred to as the two-phase commit 
process and is discussed in detail in “Introduction to two-phase commit” on page 10. 

In the case of an application simply updating DB2 data, DB2 can act as both the resource 
manager and the syncpoint manager. This is the simplest scenario. When more than one 
resource manager is involved, things become more complex. There must be one syncpoint 
manager that talks to all involved resource managers and coordinates the commit process.

Over the years resource managers on z/OS (such as IMS, CICS and DB2) have developed to 
provide two-phase commit processing between them. This will involve one of the resource 
managers taking the role of the syncpoint manager to coordinate the two-phase commit 
processing. This has required code specifically written by the IMS, CICS and DB2 developers 
to implement the process for every possible scenario.

1.3  The role of Resource Recovery Services (RRS)
With the increasing number of resource managers now available on z/OS, there was clearly a 
need for a general syncpoint manager on z/OS that any resource manager could exploit. This 
is the role of Resource Recovery Services (RRS), a component of z/OS. RRS provides a 
global syncpoint manager that any resource manager on z/OS can exploit. It enables 
transactions to update protected resources managed by many resource managers.

In this redbook we discuss the various resource managers in high level terms, and describe 
how each of them takes part in a two-phase commit environment. Some of the resource 
managers already support two-phase commit in certain environments, so we briefly cover 
those capabilities. However, we concentrate on the new capabilities provided by RRS. We 
also provide detailed information about the theory of two-phase commit and how RRS 

Definition of a resource manager (RM):

A resource manager (RM) is a subsystem or component such as CICS, IMS, or DB2 which 
manages resources that can be involved in transactions. Resource managers can be 
categorized as work managers, data resource managers, and communication resource 
managers.

Each category of resource manager is described later in this publication.

 

 

 

6 Systems Programmer’s Guide to RRS



 

implements this protocol. Finally, we provide information to help you manage RRS and its 
interactions with the resource managers in your environment.

1.3.1  Who uses RRS
RRS is increasingly becoming a prerequisite for new resource managers, or for new 
capabilities in existing resource managers. Rather than having to implement their own 
two-phase commit protocol, these products can use the support provided by RRS. Examples 
of recent exploiters of RRS are:

� WLM-managed stored procedures in DB2 requires RRS. Similarly, if you want to have a 
single unit of recovery between a stored procedure and any resource manager other than 
DB2, you must use RRS.

� WebSphere Application Server for z/OS: in this case, RRS is always required; however, 
its use is hidden from the application developer.

� If you plan to use the Transactional EXCI interface provided by CICS Transaction Server 
1.3 or later, RRS must be started in the system.

� APPC/MVS requires RRS when using protected conversations. 

� OTMA and ODBA support in IMS/ESA® requires RRS to be enabled when Synclevel 
Syncpt is specified for IMS Connect.

� Transactional extensions to VSAM record level sharing (RLS) introduced in z/OS V1R4 
exploit RRS to allow batch jobs include VSAM files in the scope of an ACID transaction.

Note: Please note that the EXCI interface has two modes of operation governed by the 
SYNCONRETURN keyword.

� Transactional EXCI

The DPL request is specified without the SYNCONRETURN keyword.  In this mode 
of operation CICS expects there to be an RRS context present when the DPL call is 
made. If this context is missing then the DPL call will fail indicating that RRS was 
unavailable.

By omitting SYNCONRETURN, the calling application is notifying CICS that any 
work performed during the DPL call is to be bound to the RRS context - this allows 
the work performed during the DPL call to be part of a wider distributed unit of work.  
If the RRS context is directed to commit then CICS will commit the DPL work, if it is 
directed to rollback then CICS will rollback the DPL work.  RRS provides COMMIT 
and ROLLBACK verbs that allow an application to direct the completion of the RRS 
context.

The purpose of this mode is to allow the coordination of CICS resources with 
resources outside of its control.

� EXCI

The DPL request is specified with the SYNCONRETURN keyword.  In this mode of 
operation CICS does not expect an RRS context, instead it creates a transaction 
under which the DPL call runs until the call completes.  If the DPL call completes 
successfully (no abend) then CICS commits the DPL work (hence synconreturn). If 
the DPL call abends then the transaction is rolled back.

Since CICS is not expecting an RRS context when it operates in this manner, it is 
possible to make DPL requests even though RRS isn't started.

 

 

 

Chapter 1. Introduction to Resource Recovery Services (RRS) 7



 

Since older transaction managers like CICS already offered many of the benefits of RRS for 
processing their own data, not many people rushed to exploit RRS when it was first 
introduced. However, as more transaction managers have become RRS resource managers, 
and the complexity of the exchanges of transactional data increases, more and more 
application programmers are going to need to use RRS. This redbook provides information 
that will help systems programmers use RRS.

 

 

 

8 Systems Programmer’s Guide to RRS



 

Chapter 2. Two-phase commit and RRS

In this chapter, we introduce the concept of two-phase commit and discuss the benefits it 
provides. We then take a closer look at Resource Recovery Services (RRS), a z/OS 
component that provides two-phase commit support across multiple resource managers.

This chapter covers the following topics:

� “Two-phase commit as supported by legacy resource managers” on page 13

� “How RRS works” on page 16

� “How two-phase commit works with RRS” on page 19

2
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 9



 

2.1  Introduction to two-phase commit
The two-phase commit protocol is a set of actions used to make sure that an application 
program either makes all changes to the resources represented by a single unit of recovery 
(UR), or makes no changes at all. This protocol verifies that either all changes or no changes 
are applied even if one of the elements (such as the application, the system, or the resource 
manager) fails. The protocol allows for restart and recovery processing to take place after 
system or subsystem failure. 

The two-phase commit protocol is initiated when the application is ready to commit or back 
out its changes. The application program that initiates the commit or backout does not need to 
know who the syncpoint manager is or how two-phase commit works. This is hidden from the 
application; a program simply calls a commit or backout service and receives a return code 
indicating whether this has been successfully completed.

When the application issues the commit request, the coordinating recovery manager, also 
called the syncpoint manager, gives each resource manager participating in the unit of 
recovery an opportunity to vote on whether its part of the UR is in a consistent state and can 
be committed. If all participants vote YES, the syncpoint manager instructs all the resource 
managers to commit the changes. If any vote NO, the syncpoint manager instructs them to 
back out the changes. This process is usually represented as two phases, as explained here.

In phase 1, the application program issues the syncpoint or backout request to the syncpoint 
manager. The coordinator issues a PREPARE command to send the initial syncpoint flow to 
all UR agent resource managers. In response to the PREPARE command, each resource 
manager involved in the transaction replies to the syncpoint manager, stating whether it is 
ready to commit or not. 

After the syncpoint manager receives all the responses back from all of its agents, phase 2 is 
initiated. In this phase, the syncpoint manager issues the commit or rollback command based 
on the previous responses. If any of the agents came back with a negative response, the 
syncpoint initiator tells all syncpoint agents to roll back their changes. 

If a resource manager (RM) fails before the syncpoint manager issues the PREPARE 
command, the syncpoint manager assumes a backout is needed and the transaction will be 
backed out by all RMs. If an RM fails after responding to the prepare but before receiving the 
commit decision (during the in-doubt stage), then all other RMs commit and the failed RM 
must contact RRS on restart to determine the correct outcome for the UR.

The moment when the coordinator records that it is going to tell all the resource managers to 
either commit or roll back is known as the atomic instant. Regardless of any failures after that 
time, the coordinator assumes that all changes are either committed or rolled back. A 
syncpoint manager usually logs the decision at this point. If any of the participants abend 
after the atomic instant, the abending resource manager must work with the syncpoint 
manager when it restarts to complete any commits or rollbacks that were in process at the 
time of the abend.

During the first phase of the protocol, the agents do not know whether the syncpoint manager 
will commit or roll back the changes until the syncpoint manager has collected all responses. 
This time is known as the in-doubt period.

The UR is described as having a particular state depending on what stage it is at in the 
two-phase commit process, as follows:

In-reset Before a UR makes any changes to a resource

In-flight While it is requesting changes to resources

 

 

 

10 Systems Programmer’s Guide to RRS



 

In-prepare Once a commit request has been made (phase 1)

In-commit Once the syncpoint manager has made a decision to commit (phase 2 
of the two-phase commit process)

In-backout If the syncpoint manager decides to back out

Figure 2-1 illustrates the two-phase commit protocol.

Figure 2-1   The two-phase commit protocol schema

The following example describes what happens during a two-phase commit. It is somewhat 
analogous to a person requesting an automated teller machine (ATM) to transfer money from 
a savings account to a checking account. The application program receives the input from the 
ATM. Each account is in a different database. To clarify our terminology, the ATM application 
runs under the control of a work manager (CICS, for example). Each database has its own 
resource manager (such as DB2 and IMS/DB).

The actions to process the ATM transaction, illustrated in Figure 2-2, are described here:

1. The ATM user requests the transfer of money from a savings account to a checking 
account.

2. The ATM application program receives the ATM input.

3. The ATM application requests that the savings database resource manager subtract the 
money from the savings database. For this function, the application uses the resource 
manager application programming interface (API).

Prepare

A

INITIATOR

B C

Update local
resources

Agent of A 

Update local
resources

Agent of B

Update local
resources

Receive

Prepare Receive

Commit

Commit

SYNCPOINT

SYNCPOINT

SYNCPOINT

Phase1

Phase 2

 

 

 

Chapter 2. Two-phase commit and RRS 11



 

Figure 2-2   Flow of ATM transactional application - Image3

4. The ATM application requests the checking database resource manager to add the money 
to the checking database. The application uses this resource manager’s API.

5. The ATM application needs to commit the database changes.

Now, assuming the two-phase commit protocol is supported by the work manager and both 
resource managers, the changes on both databases are represented by one UR. Because of 
that, as illustrated in Figure 2-3, all the changes are either committed or backed out.

Figure 2-3   The two-phase commit protocol 

   im s _ tra n _ d e b it_ s a v e ()
:
:
:

D a ta  is  N O T  c o m m itte d
w h e n  tra n s a c tio n  e x its , 
lo c k s  h e ld  

IM S

?

K e y  V a lu e s
M u lt ip le  R M s
G u a ra n te e d  o u tc o m e
A to m ic  c h a n g e  (c o m m it/ro llb a c k )

D a ta  is  N O T  c o m m itte d
w h e n  tra n s a c tio n  e x its , 
lo c k s  h e ld  

D B 2

d b 2 _ tra n _ a d d _ c h e c k ()
:
:
:

R R S
A ll D a ta  is  c o m m itte d ,
lo c k s  a re  re le a s e d

"c o m m it"

Tra n s a c t io n a l A p p lic a t io n

T
I

M
E

OK

CommitPrepare OK

Forgotten

*
Atomic Instant

In-commit

Syncpoint
Coordinator

Commit
Request

In-prepareIn-reset

Application

Resource 
Managers

In-flight

Resource
Updates

OK

phase 1 phase 2

 

 

 

12 Systems Programmer’s Guide to RRS



 

6. The ATM application work manager, taking on the role of the syncpoint manager, asks the 
resource managers to prepare for the changes. This is phase 1.

7. The resource managers indicate whether or not they can make the changes by voting YES 
or NO. 

8. If both answers are positive, the ATM application work manager notifies the resource 
managers to commit the changes; that is, the changes must be made permanent in the 
database.

9. The resource managers complete the commit and return OK to the ATM application work 
manager.

10.The application work manager gives a return code to the application program, indicating 
that all changes were made in the databases.

11.If any of the resource managers respond negatively in 8 (NO during the prepare step), the 
ATM application would have requested all the resource managers to back out the changes 
instead of committing. 

2.2  Two-phase commit as supported by legacy resource 
managers

The traditional resource managers on z/OS (CICS, IMS and DB2) all support two-phase 
commit protocols. CICS, for example, supports full two-phase commit with IMS and DB2, and 
supports two-phase commit across distributed CICS systems. So why, you might ask, do we 
need a new syncpoint manager on S/390? 

The problem is there are many restrictions imposed on application developers attempting to 
develop new applications that require updates in many different resource managers, perhaps 
across a number of systems. Many of these new applications use technologies like DB2 
stored procedures and Enterprise Java™ Beans, and use client attachment facilities of CICS 
or IMS that do not support two-phase commit. If any of these resource managers are used by 
an application to update resources, it is not possible to have a global coordinator for the 
syncpoint.

The lack of a global syncpoint manager might have influenced some application design for the 
following reasons:

� The application would not have been capable of having complex and/or distributed 
transactions if all resource managers were not participating in the two-phase commit 
protocol.

� It could not have been designed as a single application (or unit of recovery) across 
multiple systems (except for CICS).

� The application had to program around these limitations.

� It could have limited the choice of where to put the business data in order to ensure that all 
the data could be committed in a single unit of recovery.

� It could have affected the recoverability of the protected resources and/or their integrity in 
case of a failure of one of the components, since there was no way to either commit or roll 
back all the updates. 

Let’s again consider our example of a person requesting an ATM function to move money 
between two accounts. The application receives the input from the ATM. Each account is in a 
different database. Each database has its own resource manager. 

 

 

 

Chapter 2. Two-phase commit and RRS 13



 

Before RRS, if the two resource managers did not participate in a two-phase commit protocol, 
it was possible that while the update on one database was successful, the other database 
could not be updated because of any failure along the path. This situation could create 
integrity problems in the consistency of the data. 

One possible solution was to try to limit the application by using certain resource managers 
that could be coordinated. The other option was to introduce complex and manual recovery 
procedures. The introduction of RRS provides a third option. 

The following sections give you a brief overview of how some traditional resource managers 
on z/OS work without RRS services.

2.2.1  CICS
CICS has always allowed you to create transactions with ACID properties (atomicity, 
consistency, isolation, and durability). In particular, the atomic property of a CICS transaction 
means that any changes the transaction makes to recoverable resources are carried out in 
such a way that either all happen, or none happen. 

However, in releases of CICS prior to CICS Transaction Server, restrictions were imposed on 
distributed units of work. These restrictions were necessary because of the difficulties of 
coordinating updates to distributed resources. In CICS Transaction Server for OS/390, the 
CICS syncpoint manager allows you to distribute recoverable resources in a network, while 
ensuring that all updates made by a distributed unit of work are coordinated, thus preserving 
the transaction's atomicity. 

A distributed unit of work is made up of two or more local units of work; each local unit of work 
represents the part of the distributed unit of work that relates to resources on one of the 
participating systems. The period during which one site is in doubt about whether a remote 
partner has committed or backed out its part of a distributed unit of work is known as the 
in-doubt window. 

If a system or connection failure occurs during the in-doubt window, two things can be 
done: either an immediate decision is taken, or the local unit of work must wait until the 
doubt can be resolved correctly. In CICS releases prior to CICS Transaction Server for 
OS/390, CICS took an immediate decision, which could sometimes result in data in local 
and remote systems being inconsistent.

CICS Transaction Server for OS/390 has been changed so that it now permits local units of 
work that are in doubt to wait, pending the reestablishment of communication with remote 
sites. In summary, CICS Transaction Server for OS/390 removes the restriction that all 
recoverable resources should be placed in a single (file-owning) region. Resources can now 
be distributed in any way throughout a network; when failures occur, their integrity is 
preserved automatically by the CICS syncpoint manager, without the need for user 
intervention. 

Applications written for releases of CICS before CICS TS continue to work in a CICS TS 
environment without any change. They automatically take advantage of the new CICS 
syncpoint manager support.

The CICS syncpoint manager communicates with its agents using interfaces to its local 
recovery connectors (RMCs). The RMCs are the communication resource managers (LU 6.2, 
LU 6.1, DB2, MRO, and RMI), which have the function of understanding the transport 
protocols and coordinating transactions between the connected systems.

 

 

 

14 Systems Programmer’s Guide to RRS



 

There is still one exception in the CICS TS environment that existed until CICS TS 1.3. Before 
CICS TS 1.3, there was no two-phase commit protocol between the issuer of an EXCI call 
and the CICS TS region target of the call. Environments like DB2, batch and Web browsers 
requesting the execution of programs in the CICS region via the EXCI interface should not 
have updated any other non-CICS resources, since those updates were not covered by a 
two-phase commit protocol. 

Today, after CICS Transaction Server 1.3, the unit of work within the CICS server program can 
update recoverable resources because it is now part of the RRS unit of recovery associated 
with the EXCI client program. In fact, the CICS server unit of work can be committed when the 
server program returns control to the client, or can continue over multiple EXCI DPL calls, 
until the EXCI client decides to commit or back out the unit of recovery.

2.2.2  IMS
IMS/ESA, like CICS, has always provided two-phase commit support for IMS transactions. 
IMS is comprised of two components: IMS/TM, which is a work manager, and IMS/DB, which 
is a data resource manager.

The IMS DB/TM system acts as the sync point coordinator for its resource managers and 
attached databases. Specifically, the DCCTL system acts as the sync point coordinator for 
attached databases (both IMS and non-IMS). The Coordinator Control (CCTL) acts as the 
sync point coordinator for units of work associated with the CCTL region. The data resource 
manager might be DBCTL or DB2.

When it comes to distributed transactions, IMS, like CICS, has restrictions that exist in the 
“traditional” environment. APPC/IMS supports distributed applications by allowing an 
application using APPC to connect to IMS and run a transaction which may update 
protected resources. APPC/IMS supports the CPI resource recovery Commit (SRRCMIT) 
and Backout (SRRBACK) calls for IMS-managed local resources. These protected 
resources include:

� IMS TM message-queue messages

� IMS DB databases

� DATABASE 2 (DB2) databases

Starting from IMS/ESA V6, the support for APPC protected conversations 
(SYNCLVL=SYNCPT) has been added to the transaction manager. This means that an 
application that updates protected IMS resources can now also update other resources and 
be sure that either all updates happen or none happen. 

We shall see when we discuss IMS/ESA and its use of RRS that these restrictions have been 
addressed.

2.2.3  DB2
DB2 can act as both a data resource manager and as a work manager (when using DDF). 
Both CICS and IMS fully implement two-phase commit when updating DB2 data. In these 
cases, CICS and IMS act as the syncpoint managers and ensure that in-doubt units of work 
are resolved in the event of system failures. The issues involved with distributed transactions 
with CICS and IMS were previously discussed.

DB2 supports remote access by means of the Distributed Relational Database Architecture™ 
(DRDA®) protocol. This allows applications to access DB2 over APPC or TCP/IP 
connections, and this protocol supports two-phase commit. DRDA allows distributed units of 

 

 

 

Chapter 2. Two-phase commit and RRS 15



 

work across a number of DB2 servers—but no other type of resource manager can be 
involved.

A local or remote (via DRDA) program can use the SQL CALL statement to invoke a DB2 
stored procedure. Applications that run in a stored procedures address space can access any 
resources available to z/OS address spaces, such as VSAM files, flat files, APPC/MVS 
conversations, and IMS or CICS transactions.

A stored procedure can be handed parameters and can return results to the calling 
application. This is very often used as a method of invoking a program that needs to access 
some non-DB2 data. For example, an application on a UNIX® machine could connect to DB2 
on z/OS via DRDA and access DB2 data, and also invoke a stored procedure that accesses 
data in a VSAM file on z/OS.

The problem is that if a stored procedure needs to update a recoverable resource, and if 
you use DB2-managed stored procedures, DB2 will not manage syncpoint coordination 
across the resource managers. As described in Chapter 3, “Distributed RRS” on page 23, 
however, DB2 can use RRS to provide this function.

2.3  How RRS works
RRS is an exit manager. That means RRS itself does not perform tasks such as commit 
changes to a DB2 database or back out changes to an IMS database. Instead, RRS triggers 
resource manager-supplied exits based on certain events. An application can request RRS to 
commit a UR, and RRS then invokes the commit exits for all the resource managers involved 
in the UR.

The responsibility for coding the exits that RRS requires lies with the developer of the 
resource manager. It is important to note that this is not a concern for applications 
programmers writing client applications for use with resource managers that implement RRS 
support. As we shall see when discussing client application requirements when using various 
resource managers, RRS is largely hidden from the application programmer’s view. Any 
application changes required are covered in the sections on each of the IBM-supplied 
resource managers.

Technically, by RRS we really mean Recoverable Resource Management Services (RRMS). 
RRMS consists of three services:

� Registration services
� Context services
� Resource Recovery Services (RRS)

In the following sections we describe registration services and context services. It is RRS that 
provides the means to implement two-phase commit, but a resource manager must use 
registration services and context services in conjunction with Resource Recovery Services. 

2.3.1  Registration services
The first thing a resource manager must do in order to start using RRS is to identify itself to 
RRS and supply RRS with its exit routines. To do so, a resource manager uses registration 
services.

Depending on what resources a resource manager protects and what its role is, a resource 
manager will call the Set_Exit_Information service and provide for each exit it wishes to 
enable. A resource manager usually supplies exits for actions like PREPARE, COMMIT and 

 

 

 

16 Systems Programmer’s Guide to RRS



 

BACKOUT, and would use the registration service to notify RRS what exits are to be driven in 
the event of certain conditions occurring.

For more detailed information about registration services, refer to z/OS MVS 
Programming: Resource Recovery, SA22-7616.

2.3.2  Context services
Context services is an exit manager that allows resource managers to track the changes 
made by a given unit of work. It provides the data constructs and primitives that resource 
managers can use as an anchor to relate a unit of work to an application.

A context represents the environment that the application is running in and its work request. A 
work manager can create a context and have its application run under it. A work manager can 
actually create more than one context, but at any point of time there can only be one active 
context for a single task. If the work manager need to change the context, it has to explicitly 
switch to a different context.

Associated to the context is the unit of recovery that is currently running with all the 
information about the resource managers involved in this unit of work. A context may (and 
usually does) span several units of work. In fact, after you commit a unit of work, you can start 
another unit of work under the same context.

A context consists of the application program requesting the work, and the protected 
resources involved in the work. When an application program requests access to a resource, 
the resource manager might express an interest in the context associated with the application 
program and its work request. A resource manager that exploits RRS might need to express 
interest in a work context, not just a particular UR, because a context can persist over multiple 
URs. 

A context can be either a native context or a privately-managed context, as explained here:

Native context The automatically occurring context of the application program 
and protected resources associated with a work request. A 
native context is associated with a single application task. This 
context always exists and cannot be detached from the task 
and associated with any other task. A native context is implicitly 
created by the operating system.

Privately-managed context Created by a resource manager. The resource manager (for 
example CICS, IMS or WebSphere Application Server) owns 
the privately-managed context it creates, and the resource 
manager can switch a privately-managed context from one 
task to another. 

A privately-managed context is usually used by a resource 
manager, like IMS/TM, that accepts and manages work like 
transactions from outside the system. The privately-managed 
context acts as an anchor for the inbound application request. 
It can associate a transactional scope for the context, such that 
any resources that are actively manipulated under that context 
are in the same transactional scope. A native context may 
never be switched to another task. A privately managed context 
can be switched to any number of tasks. 

Some of the things that are anchored in a privately managed context are user security, user 
characteristics (like codesets, languages time zones, currency denominations and so on), 
application trace indicators and so forth.

 

 

 

Chapter 2. Two-phase commit and RRS 17



 

Table 2-1 on page 18 lists the differences between native context and privately-managed 
context.

Table 2-1   Differences between native and private-managed context

A resource manager that does work on behalf of an application must express an interest 
in the context associated with that application in order to be notified of commit/backout. 
The resource manager needs to express interest in contexts in order to get notified about 
events related to the work request, such as end context processing.

2.3.3  RRS invocation
Even though each resource manager that works with RRS is different, all must consider a 
common set of actions in order to use RRS services:

1. The resource manager must register to RRS.

2. After registering, the resource manager has to provide to RRS the exit routines that will be 
called to manage an event such as commit or backout.

3. The resource manager has to decide if it needs to create a privately managed work 
contexts for a unit of work. 

4. The resource manager has to decide how to use RRS services to implement the 
two-phase commit protocol. Figure 2-4 on page 19 shows the interaction of RRS with the 
execution of a transaction.

Difference Native context Privately-managed context

Creation of context Implicitly Explicitly by a resource manager

Association of context Always with an 
application task

Temporarily may not be associated with any task

Association change Cannot change 
association from one 
application task to 
another

Can change association from one application's 
task to another at any time. The change can even 
be to a work unit in a different home address 
space.

Context end - When application's
task ends 

- When a resource
manager running
under the application's
task explicitly ends the
context (though a new
native context
automatically begins) 

- When the home 
address space of the 
application's task 
abnormally ends

- When a resource manager explicitly ends a
privately-managed context that it owned. If the
context is associated with an application's task,
the resource manager must be running under
that task. 

- If the owning resource manager ends or
unregisters, a context disassociated from an
application's task ends immediately. 

- If the owning resource manager ends or
unregisters, a context associated with an
application's task continues until the task ends.

- If the application's task associated with a 
privately-managed context ends, the system 
invokes the PVT_CONTEXT_OWNER exit 
routine, if provided. The routine indicates if the 
privately-managed context is to be ended or 
disassociated from the task.

 

 

 

18 Systems Programmer’s Guide to RRS



 

Figure 2-4   RRS interactions

5. A transaction is started, and during its execution it makes some changes to protected 
resources of the resource manager.

6. Because of that, the resource manager calls RRS to express interest in the work context. 

7. RRS creates a unit of recovery (UR) to start representing the resource managers that are 
going to be involved at commit/backout time because they all have changes belonging to 
the same UR. 

Note: The process identified by actions 1, 2, 3 and 4 can be repeated as many times as 
different resource managers are involved during the life of the transaction.

8. When the application reaches the syncpoint, it initiates the commit process by explicitly 
calling RRS to initiate the two-phase commit process using SRRCMIT or SRRBACK 
interface, or implicitly through the stub. 

9. RRS starts the two-phase commit protocol against all the resource managers that are 
related to the specific UR by sending the prepare command. 

10.If they all answer positively, RRS logs the “atomic” instant of commit and sends back the 
commit to all participants. If any respond negatively, RRS communicates to roll back all 
changes to all participants. 

2.4  How two-phase commit works with RRS
In a recovery environment, each resource manager still relies on its own commit/backout 
mechanism to manage local resources. When an application makes changes to protected 
resources across different resource managers, RRS gets involved as a syncpoint manager 
across the interested resource managers that are acting as agents. In this case, RRS 
provides the “atomic” syncpoint coordination in the two-phase commit protocol.

The final objective of RRS is to provide transactional capability to the application, no matter 
which resources managers are involved and how they are involved—where transactional 

R e s o u rc e  M a n a g e r

p re p a re

E x p re s s
in te re s t

U p d a te
lo c a l

re s o u rc e

S R R C M IT

c o m m it

8

6

1 0

1
R e g is te r
in te re s t

R R S

U R R M7

5

9

5

U O W

"y e s "

 

 

 

Chapter 2. Two-phase commit and RRS 19



 

capability identifies the possibility to either commit all the changes performed by the 
application across multiple resource managers, or none at all.

In this architecture, RRS and the current subsystem syncpoint managers work together to 
provide full recovery at the application level. Depending on the application design, in some of 
these solutions RRS acts as the global coordinator and the subsystem syncpoint managers 
act as agents; in other models, it might be vice versa.

The important thing is that, if an application needs an atomic syncpoint when it updates 
resources across multiple resource managers, all interested resource managers should 
support a two-phase commit protocol, either natively or through RRS. When the application is 
designed in such a distributed environment, the objective is to achieve a global transaction 
capability represented by a single unit of recovery, where all the application elements 
represented by the logical unit of work across different resource managers can be 
coordinated by a unique syncpoint manager.

This concept is illustrated in Figure 2-5 on page 20. There you can see a sample of a 
distributed application and how it can behave differently, depending on whether or not it uses 
RRS. In the first configuration, the connection from the APPC conversation, the DB2 Stored 
procedure is performed using CAF, so the whole application appears as two separate units of 
recovery (one is the APPC conversation, and the other is the DB2 STP and IMS) with two 
different syncpoint managers. That means that changes made by the two units of recovery 
can be either committed or backed out independently. This is because CAF does not support 
a two-phase commit protocol.

In the second configuration, the APPC conversation has been changed to use RRSAF in 
the connection toward DB2 stored procedures. In this case, the application is represented 
by a single unit of recovery, and all changes made across the different logical units of 
work are either committed or backed-out all together. This is because all the resource 
managers are participating in a two-phase commit protocol, either natively as IMS or 
through RRS as for APPC and RRSAF, and RRS is the syncpoint manager.

Figure 2-5   One-phase commit vs two-phase commit protocol

Unit of recovery

SYNCLVL=
APPC APPC

SYNCPOINT

Logical
uow

Logical
uow

Unit of recovery

DB2
Stored

Procedure
IMS

Logical
uow

Logical
uow

CAF

APPC

Logical
uow

APPC

Logical
uow

SYNCLVL=

SYNCPOINT

DB2
Stored

Procedure
IMS

Logical
uow

Logical
uow

RRSAF

Single unit of recovery

 

 

 

20 Systems Programmer’s Guide to RRS



 

The two-phase commit diagram might slightly change when RRS comes into play. As 
illustrated in Figure 2-6, RRS can function as a syncpoint manager for resource 
managers that do not currently participate in the two-phase commit protocol. In this new 
picture, once an application requests that its resource updates be committed, RRS works 
with the resource managers to determine if the request can be honored. If the request 
can be honored, RRS works with the resource managers to ensure that all updates are 
committed.

Figure 2-6   Two-phase commit protocol with RRS

In phase 1 of the two-phase commit process, RRS ask each resource manager if it can 
guarantee that it can make its update. If they all agree, RRS records that the changes can be 
committed. When the action of logging the commit request is done, the atomic instant has 
been reached.

After the atomic instant is reached for a given unit of recovery, there is no way to fall back. 
The resource managers are required to commit the resources updated by the 
application.This means that even if a failure occurs past the atomic instant, the resource 
managers and RRS must work together to ensure that the resources are eventually 
committed, regardless of the reason for the failure (note that this effort may occur a 
considerable amount of time after the commit attempt).

2.5  Summary
This chapter gave an outline of what the two-phase commit process is, and of the role RRS 
plays as a syncpoint manager on z/OS.

In the remaining chapters, we look at resource managers that exploit RRS and discuss 
each in some detail. We deal with work managers, data resource managers, and a 
communications resource manager. Remember that subsystems like CICS, IMS and DB2 
may assume the role of a work manager or data resource manager, depending on the 
context in which we examine them. Therefore, you may find elements of these 
subsystems discussed in a number of chapters, depending on the function they perform. 

A p p lic a t io n

R e s o u rc e
M a n a g e rs

R R S

In - re s e t In - f l ig h t In -p re p a re In -c o m m it F o rg o t te n

R e s o u rc e
U p d a te s

C o m m it
R e q u e s t

O K O K

P re p a re C o m m it O K

A to m ic  In s ta n t

 

 

 

Chapter 2. Two-phase commit and RRS 21



 

 

 

 

22 Systems Programmer’s Guide to RRS



 

Chapter 3. Distributed RRS

In this chapter we discuss the distributed environment, in which a transaction might span 
multiple work managers and resource managers across multiple systems. We also describe 
how Resource Recovery Services (RRS) comes into play to handle this unit of work as a 
single unit of recovery (UR).

This chapter covers the following topics:

� “Distributed two-phase commit” on page 24

� “RRS distributed syncpoint support” on page 25

� “Multisystem cascaded transactions” on page 26

3
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 23



 

3.1  Distributed two-phase commit
In a distributed environment, you might want to have a transaction that spans multiple work 
managers and resource managers across multiple systems be handled as one unit of 
recovery (UR). 

Most of the single resource manager concepts remain unchanged even in a distributed 
resource recovery environment, where a work request can be distributed across more than 
one system. Each resource manager is normally capable of either committing or backing out 
changes that it makes to its own recoverable resources.

However, in a distributed resource recovery environment, not only must there be a syncpoint 
manager on each system to coordinate the local resource managers, but also one of the 
syncpoint coordinators must also act as the overall syncpoint manager for the UR. That 
syncpoint manager must communicate with the other syncpoint managers using the full 
two-phase commit protocol.

In Figure 3-1, imagine a transaction running on Work Manager A that updates resources in 
Resource Managers A1 and A2. The transaction also runs remote transactions on System B 
and System C, and wants all updates done by the remote resource managers to be handled 
as one UR.

Figure 3-1   Distributed two-phase commit

When the transaction running on Work Manager A decides to commit the work, the following 
needs to happen:

1. Work Manager A assumes the role of the global syncpoint manager for the complete UR, 
as well as the role of the syncpoint manager for the local resource managers. It sends a 
“prepare to commit” message to the local resource managers and also to the work 
managers on System B and System C.

System A  (Initiator) System B (Agent)

System C (Agent)

Work Manager AWork Manager A Work Manager B

Work Manager C

Resource 
Manager C1

Resource 
Manager 

C2

Resource 
Manager A1

Resource 
Manager 

A2

Resource 
Manager 

B1

Resource 
Manager 

B2

Distributed two-phase commit

Two-phase commit 
protocol

 

 

 

24 Systems Programmer’s Guide to RRS



 

2. The work managers on System B and System C act as the local syncpoint managers for 
the resource managers on their respective systems. Each work manager sends the 
“prepare to commit” to the local resource managers and checks the responses received.

3. The work managers on System B and System C must now reply to the “prepare to 
commit” received from System A in step 1. If their local resource managers have 
confirmed they are ready to commit, then System B and System C reply “ready to commit” 
to System A.

4. The work manager on System A then makes the overall decision to commit or back out 
based on the responses from the local resource managers on System A and the work 
managers on System B and System C.

5. Assuming everyone has replied “ready to commit”, then the work manager on System A 
logs the decision and sends the commit request to its local resource managers and the 
work managers on System B and System C.

6. On receipt of the commit request from System A, the work managers on System B and 
System C send a commit request to their local resource managers. When they get a 
“commit confirmed” from the local resource managers, they return “commit confirmed” to 
the work manager on System A.

7. The work manager on System A returns an “OK” to the application when it has received 
the commit confirmed from System B and System C and its own local resource managers.

In this scenario, we call the work manager on System A the initiator and the work manager 
on System B and System C agents. 

In a distributed resource recovery environment, no matter how many distributed elements are 
involved, an application should be designed in a way that only one of the transaction 
programs initiates syncpoint activity (commit or back out) for the distributed unit of recovery.

3.1.1  RRS distributed syncpoint support
To support this distributed environment, RRS allows a resource manager to operate as 
syncpoint coordinator. In RRS terms there are two roles a resource manager can take: a 
distributed syncpoint resource manager (DSRM), and a server distributed syncpoint resource 
manager (SDSRM).

In both cases the key point is that once all the resource managers involved on a system vote 
to commit, RRS does not drive the commit exits for the involved resource managers until the 
DSRM/SDSRM resource manager tells it to do so. Note that this is different from the behavior 
of RRS when it is the syncpoint coordinator—when RRS is acting as the syncpoint 
coordinator, as soon as all the resource managers vote yes to commit, then RRS drives the 
commit exits for those resource managers. 

The DSRM role is suited to a peer-to-peer relationship, where any system involved in the 
multisystem UR can be the initiating system. The initiating system is the one where the 
commit request is first issued.

The SDSRM role is suited to a client/server relationship where one system (the client) is 
always the initiating system and all the other systems (the servers) are agent systems. The 
client always initiates the commit/backout. A resource manager that takes on the SDSRM role 
uses RRS calls that are specific to an SDSRM.

You can refer to z/OS MVS Programming: Resource Recovery, SA22-7616, for greater detail 
on the differences between a DSRM and an SDSRM. However, it is not necessary to 
understand the fine details unless you are going to write your own communications resource 

 

 

 

Chapter 3. Distributed RRS 25



 

manager, where a communications resource manager is intended to be a manager that 
coordinates a two-phase commit across multiple nodes in a distributed transaction. 

When you view RRS panels or logs, you will notice a Role column; this is set to Participant, 
DSRM, or SDSRM. Example 3-1 displays an RRS Unit of Recovery Details panel showing a 
UR involving three resource managers.

Example 3-1   RRS Unit of Recovery Details panel showing SDSRM role

RRS Unit of Recovery Details          Row 1 to 3 of 3
Command ===>                                                 Scroll ===> PAGE 
                                                                              
Commands r-Remove Interest v-View URI Details                                 
                                                                              
UR identifier : BA6945ED7E8F0000000001FB010F0000                              
Create time : 2003/12/02 19:08:40.195258      Comments :                      
UR state : InFlight      UR type : Prot                                       
System : SC48      Logging Group : WTSCPLX1                                   
SURID : N/A                                                                   
Work Manager Name : BBO.CLHA1.CLUA11.WSA11.IBM                                
   Display Work IDs              Display IDs formatted                        
   Luwid  . : Present                                                         
   Eid  . . : Not Present                                                     
   Xid  . . : Present                                                         
Expressions of Interest:                                                      
S   RM Name                           Type  Role                              
    IMS.IM4B____V081.STL.SANJOSE.IBM  Prot  Participant                       
    DFHRXDM.SCSCERW1.IBM              Prot  Participant                       
    BBO.CLHA1.CLUA11.WSA11.IBM        Prot  SDSRM

This example shows an IMS system with a role of Participant, and a CICS system with a role 
of Participant. It also shows a WebSphere for z/OS server with a role of SDSRM. 

So why does WebSphere take the SDSRM role? Well, in this case we are running an EJB™ 
application in WebSphere that accesses IMS and CICS. The application also accesses 
resource managers on another system—and WebSphere needs to coordinate commit 
processing with those remote systems. WebSphere needs to be able to make the final 
decision about whether to commit or not, based on input from the external systems. These 
external systems may or may not be z/OS systems.

3.1.2  Multisystem cascaded transactions
Prior to z/OS V1.2, there was no support in RRS for a UR to be coordinated by RRS across 
multiple z/OS systems in a sysplex. Distributed two-phase commit processing across z/OS 
systems was implemented using a communications resource manager that used the RRS 
DSRM/SDSRM support.

Then in z/OS V1.2, RRS introduced support for multisystem cascaded transactions. A 
cascaded transaction is one in which several units of recovery can exist and can be managed 
by RRS, so as to act as a single transaction. Because each UR can have a separate work 
context, cascaded transactions may span multiple systems in a sysplex.

A cascaded UR consists of one parent UR and one or more child URs. Cascaded URs can be 
embedded in other cascaded URs, but there is always one top-level UR. A UR family is the 
collection of all the URs linked by a parent/child relationship. Changes made by all the URs in 
the UR family are either all committed, or all backed out. 

 

 

 

26 Systems Programmer’s Guide to RRS



 

A child UR may reside on a different z/OS system from that of the parent UR. In RRS 
terminology, the system where the top-level UR of a UR family resides is called the 
coordinator and the system where a child UR resides is called a subordinate.

Figure 3-2   RRS cascaded UR family 

Typically, a work manager needs to create a cascaded UR when a single work request 
involves multiple work managers that may be distributed across a sysplex.

Cascaded UR support in RRS requires that all systems involved be in the same RRS logging 
group. Refer to 4.2.1, “RRS logging group name” on page 33, for a description of an RRS 
logging group.

An example of a work manager that uses cascaded UR support is IMS V8, which uses this 
function to provide full shared queue support for synchronous APPC and OTMA workloads 
across a sysplex. This allows the work to be distributed and executed on any IMS system in 
the shared queue group in a sysplex.

For a detailed discussion of cascaded URs, refer to z/OS MVS Programming: Resource 
Recovery, SA22-7616.

RRS cascaded UR family

Context A

UR1
Context B

UR2 UR3

Context C
Parent
top-level UR

Child of UR1
Parent of UR4

Child of UR1
siblings

UR4

Context D

Child of UR3

 

 

 

Chapter 3. Distributed RRS 27



 

 

 

 

28 Systems Programmer’s Guide to RRS



 

Part 2 Implementing and 
managing RRS

In this part we describe the tasks required to set up RRS, how to operate in the RRS 
environment, how to use the ISPF panels to debug potential problems, and how RRS handles 
recovery and restart situations.

Part 2
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 29



 

 

 

 

30 Systems Programmer’s Guide to RRS



 

Chapter 4. Implementing RRS

In this chapter, we provide an overview of the tasks required to implement RRS. The chapter 
contains basic “how-to” information for system setup and operation in an RRS environment. It 
also describes our experiences with sample workloads, showing how RRS can be used in 
different environments.

This chapter covers the following topics:

� “Define the logging environment” on page 32

� “Define the RRS infrastructure” on page 42

Refer to “Managing RRS” in z/OS MVS Programming: Resource Recovery, SA22-7616, for 
more information about implementing RRS.

4
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 31



 

4.1  RRS Implementation overview and planning
The RRS environment includes the RRS address space, System Logger log streams, and a 
set of ISPF panels. System Logger must be active on all systems where RRS is to be run. 
Refer to System Programmer’s Guide to: z/OS System Logger, SG24-6898, for details on 
implementing System Logger.

Before you can start RRS, you must perform the tasks described in Table 4-1.

Table 4-1   RRS setup tasks

Before you begin these tasks, you need to make certain planning decisions about RRS, such 
as:

� What log streams your installation will use

� What RRS logging group name to use

� What type of log stream (DASD-only or Coupling Facility)

� The size of the log streams

4.2  Define the logging environment
There are five RRS log streams. All are required except the ARCHIVE log stream. Required 
means that RRS does not start without being able to connect to these log streams. RRS 
performs all the logging in the log streams; the resource managers can provide persistent 
interest data that RRS logs, but RRS does the actual logging. Table 4-2 summarizes the log 
streams and their contents.

Table 4-2   RRS log streams and their content

Task Required

Define the RRS log streams Required

Establish the priority for the RRS address space Required

Define RRS as a subsystem Required

Create procedures to start RRS Required

Set up automation to restart RRS Optional

Define RRS security definitions Optional

Enable RRS ISPF panels Optional (enables ISPF application to look at 
RRS log streams)

Set up RRS component trace Optional

Log stream type Log stream name Content

RRS archive log ATR.lgname.ARCHIVE Information about completed 
URs.This log is optional. See 
Note for further details.

RRS main UR state log ATR.lgname.MAIN.UR The state of active URs. RRS 
periodically moves this 
information into the RRS 
delayed UR state log when UR 
completion is delayed. 

 

 

 

32 Systems Programmer’s Guide to RRS



 

4.2.1  RRS logging group name
The RRS images on different systems in a sysplex run independently, but share log streams 
in order to keep track of transactions. An RRS logging group is a group of systems that share 
an RRS workload. To define a logging group, use the GNAME parameter on the procedure 
used to start RRS. If you omit the GNAME parameter, the default logging group name is the 
sysplex name. 

RRS on each system (there can only be one RRS active on a system) in a sysplex can be in, 
at most, one logging group. Within the same logging group, if a system or RRS fails, RRS on 
a different system can use the shared logs to take over the failed system's outstanding work, 
thereby enabling quick recovery from system and RRS failures.

The GNAME is completely transparent to the RMs. The RMs do not send a call to a specific 
RRS (unlike DB2, for example, where callers would identify which DB2 they want to talk to). 
On the other hand, all the information in RRS is associated with a particular GNAME, so if you 
change GNAMEs, all the RRS information from the old GNAME is no longer accessible.

Note: Resource managers do not know about the GNAME. An RM registers with RRS. The 
installation decides the GNAME name. RMs can provide a logname to RRS and RRS will 
provide a logname to an RM, but the RRS logname is basically a time stamp; no GNAME is 
involved. 

There are advantages to using multiple RRS logging groups:

� You can use different log groups to subdivide the transaction work in a sysplex. (For 
example, you can use separate logging groups for test systems and production systems.)

RRS resource manager data 
log

ATR.lgname.RM.DATA Information about the resource 
managers using RRS services. 

RRS delayed UR state log ATR.lgname.DELAYED.UR The state of active URs, when 
UR completion is delayed.

RRS restart log ATR.lgname.RESTART Information about incomplete 
URs needed during restart. 
This information enables a 
functioning RRS instance to 
take over incomplete work left 
over from an RRS instance that 
failed.

Note: If the writes activity to the RRS ARCHIVE log stream is very high, this might impact 
the performance throughput of ALL RRS transactions if this log stream is defined and 
actively in use by RRS. This log stream is fully optional and only needed by the installation 
for any type of post transaction history type of investigation.                    
To avoid this performance impact the installation can DELETE the archive log stream. To 
do so, the log stream must be disconnected from RRS on ALL systems and then, use the 
IXCMIAPU utility, DELETE LOGSTREAM NAME(ATR.<groupname>.ARCHIVE) to delete 
the log stream definition and, using the IDCAMS utility, DELETE 
IXGLOGR.ATR.<groupname>.ARCHIVE.* SCRATCH to delete the data set associated 
with the log stream.

If you choose not to use the ARCHIVE log stream, a warning message is issued at RRS 
startup time about not being able to connect to the log stream (however, RRS will continue 
its initialization process).

Log stream type Log stream name Content 

 

 

Chapter 4. Implementing RRS 33



 

� You can restart RRS with a different log group name to cause a cold restart and keep the 
data in the old logs for debugging and data recovery purposes. (The RRS panels allow 
you to browse any set of logs; you only need to specify the GNAME on the panel. 
However, this option is only meaningful for recovery purposes.)

4.2.2  Log stream characteristics
RRS supports both Coupling Facility log streams and DASD-only log streams. A DASD-only 
log stream has a single-system scope and cannot be used in a multisystem sysplex 
environment except in particular circumstances. For example, you might have an instance of 
RRS on a test image that uses its own logging group that is not shared with any other system 
in the sysplex. In this particular configuration, RRS can use DASD-only log streams. Usually, 
either for restart issues or because of the workload configuration, RRS is configured to use 
Coupling Facility log streams.

All instances of RRS in the same logging group must have access to the Coupling Facility 
structures and log stream data sets used by the RRS log streams for that logging group. This 
allows other RRS instances in a sysplex to access data in the event of failure of an RRS 
instance or system. This is required to permit resource managers to be restarted on different 
systems in a sysplex.

4.2.3  RRS log stream structure sizing
Table 4-3 provides initial considerations on the amount of storage required for the RRS log 
streams. These recommendations should result in reasonably efficient usage of Coupling 
Facility storage, while minimizing the likelihood that you will have to redefine the structures 
due to the variations in your workload. However, the exact amount of storage you need for 
each log stream depends on the installation’s RRS workload; SMF88 data can be used to 
understand if the structure sizes require any adjustments. Refer to the section entitled 
“Estimating Log Stream Sizes” in the IBM Redbook Systems Programmers Guide to System 
Logger for more information about sizing log streams.

Prior to starting RRS for the first time, you can get an estimate of the required structure sizes 
by using the CF Sizer tool, available on the Web at:

http://www.ibm.com/servers/eserver/zseries/pso

We used the values shown in Table 4-3 as input to the CF Sizer tool.

Table 4-3   Sample I/O activity for the RRS log streams

It is still a good practice, after you have run some workload, to reevaluate the log stream 
allocation sizes through SMF type 88 records. We suggest mapping each Coupling Facility 
log stream to a unique Coupling Facility structure. The Coupling Facility structures must be 
defined in the CFRM policy. Log streams are mapped to those structures through the LOGR 
policy.

Log stream Writes per sec Storage requirements

RM.DATA 2 Low, if few resource managers. 
Medium, if many resource managers.

RESTART 10 Medium

MAIN.UR 50 High

DELAYED.UR 10 High

ARCHIVE 50 Low

 

 

 

34 Systems Programmer’s Guide to RRS

http://www.ibm.com/servers/eserver/zseries/pso


 

If your installation has a constraint on the number of Coupling Facility structures in your 
CFRM policy, you can group multiple RRS log streams in a single Coupling Facility structure.

In that case, the following grouping is suggested:

� Place the RM.DATA and RESTART log streams in one structure.

� Place the MAIN.UR, DELAYED.UR, and ARCHIVE (if used) into another structure.

RRS log streams are active log streams with the exception of the ARCHIVE. In this case, 
“active” means that RRS manages the content of its log streams and keeps it up to date with 
the current workload running on the system. As a result, these log streams should not require 
a great deal of storage in the interim storage medium, and should not generate many offload 
operations. 

In contrast to the other log streams, the ARCHIVE is a funnel-type log stream, containing a 
record for each completed transaction. A funnel-type log stream is one in which RRS only 
writes to the log stream and never reuses or deletes the ARCHIVE log records. For this 
reason, you should expect this log stream to use offload data sets. The volume of data in the 
log stream can be managed through a combination of AUTODELETE(YES) and RETPD 
values set to the number of days you want to keep this data in your installation.

4.2.4  Define the RRS log streams
RRS supports both Coupling Facility log streams and DASD-only log streams. The following 
list describes the steps required to set up RRS log streams. If you are using DASD-only log 
streams, you can skip step 2 and step 3.

The following tasks must be completed: 

1. Verify the DFSMS definitions required for staging and offload datasets.

2. Define the Coupling Facility structures to the CFRM policy and activate the new policy 
after that has been updated.

3. Define the structures to the System Logger policy.

4. Define the log streams to the System Logger policy.

Verify DFSMS definitions required for RRS
To ensure successful operation, the data sets used by System Logger must be set up with the 
correct attributes. To ensure this, the SMS constructs used by System Logger must be 
correct.

� Determine the naming conventions for the RRS log streams and log stream data sets. The 
log stream names are ATR.gname.logstreamname, while the default data set names for 
offload and staging are IXGLOGR.ATR.gname.logstreamname where gname, the group 
name, defaults to the SYSPLEX name. You can specify the high level qualifier for the data 
sets using the HLQ or EHLQ parameter on the log stream definition in the System Logger 
policy.

� Ensure that the correct SMS classes are assigned to the System Logger data sets, either 
by specifying the SMS class names in the Logger policy, or by coding appropriate SMS 
ACS routines. In particular, ensure that SHAREOPTIONS(3,3) is specified in the Data 
Class to avoid data gap or data loss conditions.

Define the Coupling Facility structures in the CFRM policy
This task is only required if you are defining Coupling Facility-based log streams.

 

 

 

Chapter 4. Implementing RRS 35



 

If you are defining Coupling Facility-based log streams, then each log stream needs to be 
mapped to a Coupling Facility structure. Coupling Facility structures are defined in the CFRM 
policy. Log streams are mapped to these structures in the LOGR policy. 

In the sample shown in Example 4-1, we have created a Coupling Facility structure for each 
log stream.

Example 4-1   CFRM policy sample

//MAINSTR JOB CLASS=A,MSGCLASS=A 
//POLICY EXEC PGM=IXCMIAPU            
//SYSPRINT DD SYSOUT=A                 
//SYSIN DD * 

DATA TYPE(CFRM) 
STRUCTURE NAME(RRS_MAINUR_1) 

SIZE(4096)                           
INITSIZE(1024)                       
PREFLIST(FACIL01, FACIL02)

STRUCTURE NAME(RRS_DELAYED_1) 
SIZE(24576)                           
INITSIZE(8192)                       
PREFLIST(FACIL01, FACIL02)

STRUCTURE NAME(RRS_ARCHIVE_1) 
SIZE(24576)                           
INITSIZE(6144)                       
PREFLIST(FACIL01, FACIL02)

STRUCTURE NAME(RRS_RMDATA_1) 
SIZE(4096)                           
INITSIZE(1024)                       
PREFLIST(FACIL01, FACIL02)

STRUCTURE NAME(RRS_RESTART_1) 
SIZE(28672)                           
INITSIZE(9216)                       
PREFLIST(FACIL01, FACIL02)

/*

Define the structures in the System Logger policy
This task is only required if you are defining Coupling Facility-based log streams.

After the structures are defined in the CFRM policy, the next step is to define the structure(s) 
in the System Logger policy. This definition is used by System Logger to match log streams to 
Coupling Facility structures. Example 4-2 shows input to the IXCMIAPU utility to define the 
structures to the System Logger policy.

Example 4-2   Structure definition in the System Logger policy

/DEFSTREXECPGM=IXCMIAPU
//SYSPRINT DDSYSOUT=A
//SYSINDD *

DATA TYPE(LOGR) 

DEFINE STRUCTURE NAME(RRS_MAINUR_1) 
LOGSNUM(1) 
AVGBUFSIZE(158)

 

 

 

36 Systems Programmer’s Guide to RRS



 

MAXBUFSIZE(65276)

DEFINE STRUCTURE NAME(RRS_DELAYED_1) 
LOGSNUM(1) 
AVGBUFSIZE(158)
MAXBUFSIZE(65276) 

DEFINE STRUCTURE NAME(RRS_ARCHIVE_1) 
LOGSNUM(1) 
AVGBUFSIZE(262) 
MAXBUFSIZE(65276) 

DEFINE STRUCTURE NAME(RRS_RMDATA_1) 
LOGSNUM(1) 
AVGBUFSIZE(252) 
MAXBUFSIZE(1024) 

DEFINE STRUCTURE NAME(RRS_RESTART_1) 
LOGSNUM(1) 
AVGBUFSIZE(158) 
MAXBUFSIZE(65276) 

/*

MAXBUFSIZE/AVGBUFSIZE
MAXBUFSIZE, in conjunction with AVGBUFSIZE, is used to determine the CF structure 
ENTRY/ELEMENT ratio. When data is written to the CF, it is written in increments equal to 
ELEMENT size. A MAXBUFSIZE greater than 65276 gives an element size of 512; a 
MAXBUFSIZE equal to or less than 65276 results in an element size of 256. 

We recommend running for a time with the AVGBUFSIZE values shown in Table 4-4, then 
adjusting the AVGBUFSIZE value to match the value shown in the IXCMIAPU report. 

Table 4-4   Suggested starting AVGBUFSIZE values

Sample JCL to produce the IXCMIAPU report is shown in Example 4-3.

Example 4-3   JCL to get IXCMIAPU Logger Policy report

//LOGRLIST  JOB (0,0),'LIST LOGR POL',CLASS=A,REGION=4M,   
//             MSGCLASS=X,NOTIFY=&SYSUID                   
//STEP1    EXEC PGM=IXCMIAPU                               
//SYSPRINT DD   SYSOUT=*                                   
//SYSABEND DD   SYSOUT=*                                   
//SYSIN    DD   *                                          
  DATA TYPE(LOGR) REPORT(YES) 

Log stream Recommended starting AVGBUFSIZE

ARCHIVE 262

DELAYED.UR 158

MAIN.UR 158

RESTART 158

RM.DATA 252

 

 

 

Chapter 4. Implementing RRS 37



 

It does not matter if the defined AVGBUFSIZE does not exactly match the average buffer size 
as reported by IXCMIAPU, because System Logger dynamically adjusts the Entry/Element 
ratio. System Logger will adjust the ratio to avoid potential problems, especially if you do not 
share the same structure among multiple log streams, each of which could have different 
characteristics.

Define the log streams to the System Logger policy
This step is required for both DASD-only log streams and Coupling Facility log streams. 
Samples for both definitions are illustrated here, since some parameters differ. 

Coupling Facility log stream definition
Example 4-4 shows input to the IXCMIAPU utility to define log streams to LOGR for log 
streams using Coupling Facility structures.

Example 4-4   Coupling Facility log streams definition in the System Logger policy

/DEFSTREXECPGM=IXCMIAPU
//SYSPRINT DDSYSOUT=A
//SYSINDD *

DATA TYPE(LOGR) 

DEFINE LOGSTREAM NAME(ATR.PLEX1.MAIN.UR)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
HLQ(test)
LS_SIZE(1024)
LS_DATACLAS(vsamls)
STG_SIZE(1024)
STRUCTNAME(RRS_MAINUR_1)

DEFINE LOGSTREAM NAME(ATR.PLEX1.DELAYED.UR)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
HLQ(test)
LS_SIZE(960)
LS_DATACLAS(vsamls)
STG_SIZE(960)
STRUCTNAME(RRS_DELAYED_1)

DEFINE LOGSTREAM NAME(ATR.PLEX1.ARCHIVE)
LOWOFFLOAD(0)
HIGHOFFLOAD(80)
STG_DUPLEX(NO)
HLQ(test)
LS_SIZE(960)
LS_DATACLAS(vsamls)
STRUCTNAME(RRS_ARCHIVE_1)
RETPD(2)
AUTODELETE(YES)

DEFINE LOGSTREAM NAME(ATR.PLEX1.RM.DATA)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
STG_DUPLEX(YES)
DUPLEXMODE(UNCOND)

 

 

 

38 Systems Programmer’s Guide to RRS



 

HLQ(test)
LS_SIZE(192)
LS_DATACLAS(vsamls)
STG_SIZE(192)
STRUCTNAME(RRS_DATA_1)

DEFINE LOGSTREAM NAME(ATR.PLEX1.RESTART)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
STG_DUPLEX(YES)
DUPLEXMODE(COND)
HLQ(test)
LS_SIZE(960)
LS_DATACLAS(vsamls)
STG_SIZE(960)
STRUCTNAME(RRS_RESTART_1)

AUTODELETE and RETPD 

With settings AUTODELETE(YES) and RETPD>0, even though RRS will attempt to delete 
unnecessary log entries, all data will be offloaded to the offload data sets and held for the 
number of days specified for RETPD. AUTODELETE(YES) allows the System Logger (rather 
than RRS) to decide when to delete the data. 

When a new offload data set is allocated and AUTODELETE(YES) is specified, the System 
Logger will delete the data on the old offload data set that has passed the retention period. 
Since data in the MAIN.UR log stream is managed by RRS, it is better to let RRS manage the 
life of the records on this log stream, in order to avoid the risk that RRS will need records that 
have been deleted by System Logger because of the AUTODELETE option.

For the ARCHIVE log stream, RRS never uses information written on the Archive log; the 
information is intended for installation use if a catastrophic problem occurs. You must use 
retention period and autodelete support to delete old entries; specify these values large 
enough to manage this log stream to a reasonable size and to provide enough coverage in 
time to recover in any potential situation.

HIGHOFFLOAD
The HIGHOFFLOAD parameter is used to determine when the space dedicated to the log 
stream in the Coupling Facility is filling up and an offload needs to be initiated to regain 
available space. HIGHOFFLOAD should be set at 80% for all RRS log streams, at least 
initially; then use the SMF88 report to evaluate whether this value needs to be tuned.

HLQ
This parameter specifies the up to 8-byte high level qualifier for both the log stream data set 
name and the staging data set name. HLQ must be 8 alphanumeric or national ($,#,or @) 
characters, padded on the right with blanks if necessary. The first character must be an 
alphabetic or national character.

LOWOFFLOAD
The LOWOFFLOAD parameter defines the amount of data which may be retained in the log 
stream interim storage following an offload process. In the RRS environment, the 

Note: Use only AUTODELETE(NO) and RETPD(0) for all RRS log streams except 
ARCHIVE. Why? Because they can have a disastrous effect if specified otherwise.

 

 

 

Chapter 4. Implementing RRS 39



 

LOWOFFLOAD value should be high enough to retain the data required for backout of the 
UR, but low enough to keep the number of offloads to a minimum.

LOWOFFLOAD should be set between 20% and 60% for all RRS log streams as described in 
the examples, and at 0% for ARCHIVE. 

LS_SIZE
LS_SIZE defines the allocation size for the offload data sets. It should be specified large 
enough to contain several offloads, possibly a day's worth. All RRS log streams (except 
ARCHIVE) should only offload a minimal amount of data.

STG_SIZE
For a Coupling Facility log stream, STG_SIZE defines the size of the staging data set to be 
allocated if STG_DUPLEX(YES) and DUPLEXMODE are specified. If STG_DUPLEX(YES) 
and DUPLEXMODE(UNCOND) are specified, then the data in the Coupling Facility log 
stream is always duplexed to the staging data set.

If STG_DUPLEX(YES) and DUPLEXMODE(COND) are specified, then the data in the 
Coupling Facility log stream is duplexed to the staging data set only if the CF becomes volatile 
or failure-dependent. 

The size of the staging data set (STG_SIZE) must be large enough to hold as much data as 
the log stream storage in the Coupling Facility. Data is written to the staging data set in 4096 
byte increments, regardless of the buffer size. 

STG_DUPLEX
STG_DUPLEX(YES) with DUPLEXMODE(COND) means that if the CF becomes volatile, or 
resides in the same failure domain as the System Logger system, the log stream data is 

Attention: If LS_SIZE is not specified in the log stream definition, and an extent size is not 
specified in the data class pointed to by LS_DATACLAS, then this value is taken from the 
ALLOCxx Parmlib member or set via an Automatic Class Selection (ACS) routine. The 
default value in ALLOCxx is 2 tracks. For more information, refer to z/OS MVS Initialization 
and Tuning Reference, SA22-7592.

It is very important to remember that log stream staging and offload (log) data sets are 
single extent VSAM linear data sets, and the shareoptions must be specified as '3,3'. If the 
shareoptions are anything other than '3,3' then there is a risk the System Logger will be 
unable to read offloaded data and provide RRS with return code 8, reason code 804 
(IxgRsnCodeNoBlock). 

Attention: When staging data sets are used with a Coupling Facility log stream, 
STG_SIZE must be specified large enough to hold at least as much data as the CF log 
stream. If you do not specify any value for STG_SIZE, System Logger allocates a staging 
data set whose default size is the size of the corresponding structure in the Coupling 
Facility.

The structure storage is divided equally among the active log streams. If the number of log 
streams connected to the structure will vary, the STG_SIZE value should be chosen based 
on the least number of log streams that will normally be connected.

Offload processing is triggered based on the smaller capacity of either the structure log 
stream storage or the staging data set.

 

 

 

40 Systems Programmer’s Guide to RRS



 

duplexed to the staging data set; otherwise, it is duplexed to buffers in the System Logger 
dataspace. 

A CF is in the same failure domain when the Coupling Facility LPAR and the LPAR running 
this z/OS reside in the same physical hardware box, central processing complex (CPC). 
Duplexing to the staging data set means the cost of an I/O will be incurred for each write.

DASD-only log streams definitions
Example 4-5 shows definitions for the RRS log streams when defined as DASD-only log 
streams. 

Example 4-5   DASD-only log stream definitions in the System Logger policy

/DEFSTREXECPGM=IXCMIAPU
//SYSPRINT DDSYSOUT=A
//SYSINDD *

DATA TYPE(LOGR) 

DEFINE LOGSTREAM NAME(ATR.PLEX1.MAIN.UR)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
DASDONLY(YES)
HLQ(TEST)
LS_SIZE(1024)
LS_DATACLAS(VSAMLS)
STG_SIZE(1024)

DEFINE LOGSTREAM NAME(ATR.PLEX1.DELAYED.UR)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
DASDONLY(YES)
HLQ(TEST)
LS_SIZE(960)
LS_DATACLAS(VSAMLS)
STG_SIZE(960)

DEFINE LOGSTREAM NAME(ATR.PLEX1.ARCHIVE)
LOWOFFLOAD(0)
HIGHOFFLOAD(80)
DASDONLY(YES)
HLQ(TEST)
LS_SIZE(960)
LS_DATACLAS(VSAMLS)
AUTODELETE(YES)
RETPD(2)
STG_SIZE(2000)

DEFINE LOGSTREAM NAME(ATR.PLEX1.RM.DATA)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)
DASDONLY(YES)
HLQ(TEST)
LS_SIZE(192)
LS_DATACLAS(VSAMLS)
STG_SIZE(192)

DEFINE LOGSTREAM NAME(ATR.PLEX1.RESTART)
LOWOFFLOAD(60)
HIGHOFFLOAD(80)

 

 

 

Chapter 4. Implementing RRS 41



 

DASDONLY(YES)
HLQ(TEST)
LS_SIZE(960)
LS_DATACLAS(VSAMLS)
STG_SIZE(960)

DASDONLY
This parameter specifies whether the log stream being defined is a Coupling Facility or a 
DASD-only log stream. If you specify DASDONLY(NO), which is the default, the log stream is 
defined as a Coupling Facility log stream.

If you specify DASDONLY(YES), then the log stream is defined as a DASD-only log stream 
and does not use the Coupling Facility for log data. With DASDONLY(NO), you can also 
specify STG_DUPLEX, DUPLEXMODE, and LOGGERDUPLEX parameters to select a 
method of duplexing for a Coupling Facility log stream.

HLQ
This parameter specifies the up to 8-byte high-level qualifier for both the log stream data set 
name and the staging data set name. HLQ must be 8 alphanumeric or national ($,#,or @) 
characters, padded on the right with blanks, if necessary. The first character must be an 
alphabetic or national character.

MAXBUFSIZE
MAXBUFSIZE may be specified for a DASDONLY log stream, and it defines the largest block 
that can be written to the log stream. The default value is 65532 and should be used in a RRS 
environment. 

STG_DUPLEX
STG_DUPLEX(YES) with DUPLEXMODE(COND) are not applicable to DASDONLY log 
streams. 

4.3  Define the RRS infrastructure
In these sections we describe the tasks required to complete the RRS setup on your z/OS 
image.

4.3.1  WLM definitions
Use the Workload Manager (WLM) policy to control the RRS priority. The RRS priority needs 
to be equal to or higher than the dispatching priority of its resource managers. You can use 
the SYSSTC service class for the RRS address space to achieve a higher dispatching priority.

4.3.2  RRS subsystem definitions
Update the IEFSSNxx PARMLIB member to include the following statement:

SUBSYS SUBNAME(RRS)

Place this statement after the statement that defines the primary subsystem. 

Note: For further details on RRS logging environment, refer to Chapter 6 in System 
Programmer’s Guide to: z/OS System Logger, SG24-6898.

 

 

 

42 Systems Programmer’s Guide to RRS



 

4.3.3  Define RRS procedure
ATRRRS is the name of the cataloged procedure that IBM supplies in SYS1.SAMPLIB. Copy 
SYS1.SAMPLIB(ATRRRS) to SYS1.PROCLIB(RRS). The member name RRS specified here 
can be replaced with any other member name, as long as it matches the subsystem name 
specified in the IEFSSNxx PARMLIB member.

4.3.4  RRS automation
If RRS fails, it can use automatic restart management to restart itself in a different address 
space on the same system. RRS, however, does not restart itself following a SETRRS 
CANCEL command. To stop RRS and cause it to restart automatically, use the FORCE 
command with ARM and ARMRESTART.

4.3.5  Define RRS panels to ISPF
RRS provides ISPF panels to allow an installation to work with RRS. The panels provide a 
way for you to troubleshoot resource recovery problems. Before you can use the panels, 
however, you must set up access authorization, allocate the libraries containing the panels, 
and add the RRS application to the ISPF primary option menu.

We recommend that you do set up the RRS panels, because you may encounter failure 
scenarios in which you would need to use the panel information to clean up outstanding 
transactions. There is no other mechanism for determining the state of the various resource 
managers. If you have a problem running RRS, you will need to use the RRS panels to help 
identify and fix the trouble in your sysplex.

To install the panels, follow these steps:

1. Update your logon procedure. Be sure the following libraries, where the RRS panels are 
stored, are in your concatenations. 

(Note: If IPCS or WLM is installed in your logon procedure, then you get RRS along with 
them.)

a. In your SYSPROC concatenation:
//        DD DSN=SYS1.SBLSCLI0,DISP=SHR

b. In your ISPMLIB concatenation:
//         DD DSN=SYS1.SBLSMSG0,DISP=SHR

c. In your ISPPLIB concatenation:
//         DD DSN=SYS1.SBLSPNL0,DISP=SHR

d. In your ISPTLIB concatenation:
//         DD DSN=SYS1.SBLSTBL0,DISP=SHR

e. In your ISPSLIB concatenation:
//         DD DSN=SYS1.SBLSKEL0,DISP=SHR

2. Add the following lines to your primary options menu, member ISR@PRIM within your 
ISPPLIB concatenation, in your logon procedure:

a. Add to your menu options definitions:
%RRS +-%Resource Recovery Svcs Panels

b. Add to your application list within the ISR@PRIM menu definition:
RRS,'PANEL(ATRFPCMN) NEWAPPL(RRSP)'

 

 

 

Chapter 4. Implementing RRS 43



 

4.3.6  Define RRS SAF authorization
In your installation, you can configure RRS to allow a user to manage all the RRS images in 
the sysplex from a single image. Access to RRS system management functions is controlled 
by the following RACF® resource.

To control RRS access across a sysplex, RRS uses the 
MVSADMIN.RRS.COMMANDS.gname.sysname resource in the FACILITY class, where 
gname is the logging group name and sysname is the system name. 

If you are running RRS on a single system, RRS can use either the 
MVSADMIN.RRS.COMMANDS.gname.sysname resource or the 
MVSADMIN.RRS.COMMANDS resource in the FACILITY class to control access to RRS 
system management functions on the current system.

4.3.7  Define RRS component trace
We recommend running all the systems with the following CTRACE options in effect all the 
times:

TRACEOPTS                                                              
ON                                                                     
BUFSIZE(64M)                                                           
OPTIONS('EVENTS(URSERVS,LOGGING,CONTEXT,EXITS,STATECHG,RRSAPI,RESTART)')                                                 

Use the D TRACE,COMP=SYSRRS command to see the current setting and use the TRACE 
CT,ON,COMP=SYSRRS,PARM=CTIRRSxx command to alter the settings once the CTIRRSxx 
parmlib member has been updated. RRS does not have to be recycled to enable RRS 
CTRACE. 

 

 

 

44 Systems Programmer’s Guide to RRS



 

Chapter 5. RRS operations

In this chapter, we discuss RRS operations such as stopping and starting RRS. We also 
describe management of the RRS log streams.

This chapter covers the following topics:

� “Stopping RRS” on page 48

� “Stopping RRS” on page 48

� “Using RRS panels” on page 48

5
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 45



 

5.1  Starting RRS
You start RRS by starting the RRS address space. Normally you start RRS at IPL, and it 
should stay active on a system as long as resource managers that require RRS are running. 
Start RRS from the COMMNDxx member of PARMLIB (not from IEACMDxx, because other 
services that RRS depends on have not been started yet).

If you start RRS after JES is up, then you must start it with SUB=MSTR. On our system, we 
start RRS with the command S RRS. Example 5-1 shows an example of starting RRS.

You can only start one instance of RRS on a system at a time.

Example 5-1   RRS startup syslog sample without ARCHIVE log stream

IEF695I START RRS      WITH JOBNAME RRS      IS ASSIGNED TO USER STC 
   , GROUP SYS1                                                      
ATR221I RRS IS JOINING RRS GROUP #@$#PLEX ON SYSTEM #@$2             
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_RMDATA_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                         
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                         
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_MAINUR_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                         
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                         
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_DELAYEDUR_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                         
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                         
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_RESTART_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                         
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                         
IXG231I IXGCONN REQUEST=CONNECT TO LOG STREAM ATR.#@$#PLEX.ARCHIVE DID 
NOT SUCCEED FOR JOB RRS.  RETURN CODE: 00000008  REASON CODE: 0000080B 
DIAG1: 00000008  DIAG2: 0000F801  DIAG3: 05030004  DIAG4: 05020010     
ATR132I RRS LOGSTREAM CONNECT HAS FAILED FOR 
OPTIONAL LOGSTREAM ATR.#@$#PLEX.ARCHIVE.                               
RC=00000008, RSN=00000000                                              
ASA2011I RRS INITIALIZATION COMPLETE. COMPONENT ID=SCRRS 

On startup RRS connects to its log streams, and any failure to connect to any log stream 
except the ARCHIVE log stream results in an RRS abend. Example 5-1 shows what happens 
when the ARCHIVE log stream is not available: RRS issues ATR132I message and 
completes its initialization.

Example 5-2 shows the result of the command, which displays all RRS log streams.

Example 5-2   RRS log streams

D LOGGER,LOGSTREAM,LSN=ATR.*                              
IXG601I   20.10.29  LOGGER DISPLAY 
INVENTORY INFORMATION BY LOGSTREAM                        
LOGSTREAM                  STRUCTURE        #CONN  STATUS 
---------                  ---------        ------ ------ 
ATR.#@$#PLEX.DELAYED.UR    RRS_DELAYEDUR_1  000003 IN USE 
  SYSNAME: #@$1                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$3                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$2                                           
    DUPLEXING: STAGING DATA SET                           
ATR.#@$#PLEX.MAIN.UR       RRS_MAINUR_1     000003 IN USE 

 

 

 

46 Systems Programmer’s Guide to RRS



 

  SYSNAME: #@$1                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$3                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$2                                           
    DUPLEXING: STAGING DATA SET                           
ATR.#@$#PLEX.RESTART       RRS_RESTART_1    000003 IN USE 
  SYSNAME: #@$1                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$3                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$2                                           
    DUPLEXING: STAGING DATA SET                           
ATR.#@$#PLEX.RM.DATA       RRS_RMDATA_1     000003 IN USE 
  SYSNAME: #@$1                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$3                                           
    DUPLEXING: STAGING DATA SET                           
  SYSNAME: #@$2                                           
    DUPLEXING: STAGING DATA SET 

5.1.1  RRS warm start
There is no option that can be passed to RRS to tell it to perform a warm or cold start. 
Instead, RRS performs a warm start once it finds data in the RM.DATA log stream. 

Note that when RRS successfully warm starts (if data is available in the RM.DATA log 
stream), all RRS log streams (with the exception of the ARCHIVE log stream) should be intact 
in order for RRS to access data about incomplete transactions.

The first instance of RRS to start (within a logging group) performs log stream recovery.

After a warm start occurs, RRS is available to resource managers. This is the normal mode of 
operation in a production system.

5.1.2  RRS cold start
On startup, if RRS finds an empty RM.DATA log stream, then it cold starts. RRS flushes any 
log data found in the MAIN.UR and DELAYED.UR log streams to the ARCHIVE log, if it exists.

An RRS cold start applies to the entire RRS logging group. You cannot cold start RRS on just 
one system in a sysplex that is a part of a logging group. This is because the log streams are 
shared across all systems in the sysplex in that logging group.

After an RRS cold start, there is no data available to RRS to complete any work that was in 
progress before RRS was cold started. RRS can be cold started by stopping all RRS 
instances in the logging group, and deleting and redefining the RM.DATA log stream using the 
IXCMIAPU utility. RRS should only be deliberately cold started in very controlled 
circumstances; make sure of the following:

� All resource managers that require RRS are stopped on all systems that are a part of the 
RRS logging group to be cold started. Use the RRS ISPF panels to check on resource 
manager status.

� Using the RRS ISPF panels, check that no incomplete URs exist for any resource 
manager.

 

 

 

Chapter 5. RRS operations 47



 

5.2  Stopping RRS
Use the SETRRS CANCEL operator command to stop RRS. It is good practice to issue this as a 
part of your system shutdown, because it results in a cleaner system recovery. It should also 
be done before doing a sysplex shutdown.

If RRS fails to stop as a result of the SETRRS CANCEL command, then you can issue a FORCE 
RRS,ARM operator command.

Note: Never stop RRS on a system while there are active resource managers using RRS 
services. The effects of this depends on the resource manager; however, they range from 
disruption of work, to complete failure of the resource manager. We discuss the effects of 
RRS being made unavailable on particular resource managers in Part 3, “RRS exploiters” on 
page 71, where we deal with each resource manager.

5.3  Using RRS panels
In this section, we provide detailed examples using RRS panels to view data from a particular 
workload. Figure 5-1 shows the RRS primary options panel. The first option selected is option 
2, Display/Update RRS-related Resource Manager information. We can see the RRS panel 
content when running our sample workload, and view the meaning of the content. 

Figure 5-1   RRS primary options panel

If you select option 2, you get the RRS Resource Manager Information panel, which shows 
the state of each registered resource manager. As shown in Figure 5-2 on page 49, each 
APPC LU is its own resource manager: 

� DB2 has two resource managers, one for the RRS/AF connection 
(DSN.RRSATF.IBM.RDF0), and one for the WLM managed stored procedures 
(DSN.RRSPAS.IBM.RDF0). 

� IMS has only one resource manager (IMS.IMR1____V061.STL.SANJOSE.IBM). DCE/AS 
has one resource manager per server address space. 

Figure 5-2 also shows that there are two DCE/AS servers, MVSSYS1IMSSYS1SERVER1 
and MVSSYS1IMSSYS1SERVER2. The proper state for an active resource manager is RUN. 
If the resource manager is not active, its state is RESET. If the state is UNSET, it means an 
error occurred and problem determination documentation needs to be gathered.

The resource manager appears in the list the first time it registers with RRS, and it never goes 
away until RRS is cold started. Therefore, if a resource manager is moved to another system, 

                                       RRS
Option ===>
 
Select an option and press ENTER:
 
1 Browse an RRS log stream                                
2 Display/Update RRS related Resource Manager information 
3 Display/Update RRS Unit of Recovery information         
4 Display/Update RRS related Work Manager information     
5 Display/Update RRS UR selection criteria profiles       
6 Display RRS-related system information                  

 

 

 

48 Systems Programmer’s Guide to RRS



 

that resource manager appears in the list for both systems: one in RESET state, and the 
other (if active) in RUN state.

Figure 5-2   RRS Resource Manger List showing state, system, logging group

If you select option 3 from the RRS primary menu panel, the RRS Unit of Recovery Selection 
panel is displayed; see Figure 5-3 on page 50. The RRS Unit of Recovery Selection panel 
allows users to select the units of recovery (URs) that they wish to see. After you press Enter, 
if there are no URs, then message ATR060I is displayed indicating that condition.

                             RRS Resource Manager List
   Command ===>
 
   Commands: v-View Details u-View URs r-Remove Interest
 
   S   RM Name                           State System   Logging Group 
       MVSSYS1IMSSYS1SERVER2             Run #@$2     #@$#PLEX 
       MVSSYS1IMSSYS1SERVER1             Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0IMS1.IBM           Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0IMS4.IBM           Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0IMS3.IBM           Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0IMS2.IBM           Run #@$2     #@$#PLEX 
       IMS.IMR1____V061.STL.SANJOSE.IBM  Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0ASCHB.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUA07.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUA06.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0ASCHA.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUP07.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUA05.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUA04.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUP06.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUP05.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUP04.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUA03.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUGR.IBM           Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUP03.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUGR1.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0LUGR0.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0PROT1.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0PROT2.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0PROT3.IBM          Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0PROT4.IBM          Run #@$2     #@$#PLEX 
       DSN.RRSATF.IBM.RDF0               Run #@$2     #@$#PLEX 
       DSN.RRSPAS.IBM.RDF0               Run #@$2     #@$#PLEX 
       ATB.USIBMT6.MF0ASCHG.IBM          Run #@$2     #@$#PLEX 

 

 

 

Chapter 5. RRS operations 49



 

Figure 5-3   RRS unit of recovery selection

If there are units of recovery to display, then the Unit of Recovery List panel is displayed; see 
Figure 5-4 on page 51.

RRS Unit of Recovery Selection
  Command ===>
  ATR060I No information matches the selection criteria
Commands: save-Save Profile  get-Get Profile  ENTER-Query      
                                                               
Profile Name  . .                                              
                                                               
UR and Work Identifier Criteria====================            
URID pattern . .                                               
                                                               
SURID Pattern                                                  
                                                               
                                                               
LUWID pattern (netid.luname,instnum,seqnum)                    
                                                               
                                                               
TID  . . . .               (from 1 to 4294967295 in decimal)   
Low TID  . .               High TID . .                        
                                                               
GTID Pattern                                                   
00-0F                                                          
10-1F                                                          
20-27                                                          
                                                               
Format ID                  (from 1 to 4294967295 in decimal)   
                                                               
GTRID Pattern                                                  
00-0F                                                          
10-1F                                                          
20-2F 

 

 

 

50 Systems Programmer’s Guide to RRS



 

Figure 5-4   Unit of Recovery List

For most processing, URs are fleeting and the user has difficulty displaying them. However, 
the RRS Unit of Recovery List, showing 16 of 41 possible URs, is displayed after processing 
one and only one WLM-managed DB2 stored procedure. These URs are related to the 
NUMTCB parameter for the WLM-managed stored procedure address space. 

When the stored procedure is invoked, WLM detects that a new address space is needed. 
The address space is created with NUMTCB plus one TCB. DB2 expresses an unprotected 
interest in each TCB. A stored procedure is assigned to a TCB. When a commit is executed, 
DB2 determines if it is the only interested resource manager. If it is, then no further action is 
taken, from an RRS perspective. 

However, if there is another interested resource manager, then DB2 converts its interest into 
a protected interest, and assumes that the role of the SDSRM and RRS is called using the 
appropriate services for the presumed abort protocol. After the unit of recovery is complete, 
DB2 expresses an unprotected interest in the TCB once again.

If you place a v on the command line for one of the units of recovery listed in Figure 5-4, you 
can obtain information about all the resource managers that expressed interest in a unit of 
recovery. Figure 5-5 on page 52 shows the details of the unit of recovery.

                             RRS Unit of Recovery List          Row 1 to 16 of 41
   Command ===>                                                 Scroll ===> PAGE
 
   Commands: v-View Details c-Commit b-Backout r-Remove Interest
 
   S UR Identifier                     System    Logging Group        
                                     State         Type  Comments

B0DE5BB27E96F8A00000029301030000 #@$2      #@$#PLEX    
   InFlight  Unpr
       B0DE5BB27E96FB380000029401030000 #@$2      #@$#PLEX 

 InFlight  Unpr
       B0DE5BB27E96F6080000029201030000 #@$2      #@$#PLEX

 InFlight  Unpr
       B0DE5BB27E96E6780000028C01030000 #@$2      #@$#PLEX 

 InFlight  Unpr
       B0DE5BB27E96E9100000028D01030000 #@$2      #@$#PLEX 

 InFlight  Unpr 
       B0DE5BB27E970D600000029B01030000 #@$2      #@$#PLEX 

 InFlight  Unpr
       B0DE5BB27E9712900000029D01030000 #@$2      #@$#PLEX

 InFlight  Unpr
       B0DE5BB27E9717C00000029F01030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB17E96BF900000027D01030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB17E96D6E80000028601030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB27E9703000000029701030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB27E96EBA80000028E01030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB17E96D4500000028501030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB27E96F3700000029101030000 #@$2      #@$#PLEX 

  InFlight  Unpr
       B0DE5BB17E96BA600000027B01030000 #@$2      #@$#PLEX 

  InFlight  Unpr

 

 

 

Chapter 5. RRS operations 51



 

Figure 5-5   Unit of Recovery Details panel

The Unit of Recovery Details panel displays the exits for which a resource manager can be 
called, as well as the current status of each exit. In this case there was no sync point 
requested, so no exits have been called yet, and the status shows as Uncalled; see 
Figure 5-6.

Figure 5-6   RRS URI Details

When an exit is called, its status changes to CALLED. When an exit returns, the status 
reflects the return code that the exit passed back to RRS. These return codes are 
documented in z/OS MVS Programming: Resource Recovery, SA22-7616.

If you want to browse an RRS log stream, return to the RRS primary options menu and select 
option 1, Browse an RRS log stream menu. This will bring you to the RRS logstream 
Browse Selection panel shown in Figure 5-7 on page 53.

                           RRS Unit of Recovery Details          Row 1 to 1 of 1
  Command ===>                                                 Scroll ===> PAGE
 
  Commands r-Remove Interest v-View URI Details
 
  UR identifier : B0DE5BB27E96F8A00000029301030000
  Create time : 2003/08/07 18:58:01.984113      Comments :
  UR state : InFlight      UR type : Unpr  ASID : 0000
System : #@$2      Logging Group : #@$#PLEX 
SURID : N/A                                 
Work Manager Name : 

     Display Work IDs           /  Display IDs formatted
     Luwid  . : Not Present
     Eid  . . : Not Present
     Xid  . . : Not Present
  Expressions of Interest:
  S   RM Name                           Type  Role
      DSN.RRSPAS.IBM.RDF0               Unpr  Participant

RRS URI Details
   Command ===>
 
   UR identifier : B0DE5BB27E96F8A00000029301030000
   URI token . . : 7E872B40000004650000000000000000
   RM name . . . : DSN.RRSPAS.IBM.RDF0

Type  . . . . : Unpr          Status . : ACTIVE   
Role  . . . . : Participant   State  . : InFlight 
SURID : N/A                                       

                                                  
Exit/State      Status                  Duration
BACKOUT  . . . : Uncalled

   COMPLETION . . : Uncalled
   COMMIT . . . . : Uncalled
   DSE/IN_DOUBT : Uncalled
   End_UR . . . . : Uncalled
   EXIT_FAILED  . : Uncalled
   ONLY_AGENT . . : Uncalled
   PREPARE  . . . : Uncalled
   STATE_CHECK  . : Uncalled

 

 

 

52 Systems Programmer’s Guide to RRS



 

From this panel you may choose which log stream to browse. Notice that the group name 
defaults to the name of our sysplex. However, since the group name for our test is APPC, we 
must always overstrike this field whenever we access this panel. This ensures that we select 
the correct set of log streams.

Figure 5-7   RRS logstream Browse Selection

For any of the log streams you choose to browse, RRS places the data in a file called 
userid.ATR.REPORT. This file may be preallocated and the data set name may be changed, 
or if the data set does not exist, RRS will dynamically allocate it.

If you are searching for a particular UR in the ARCHIVE log stream, we recommend that you 
restrict the time frames of both Entries from . . . . and through . . . . . . , because 
RRS uses the UR identifier and the from time to intelligently restrict where to start searching 
in the log stream. However, RRS makes no assumptions about when all archive records are 
found. Thus, if a record is requested in the middle of the log stream, RRS searches to the end 
of the log stream.

RRS logstream Browse Selection
   Command ===>
 
   Provide selection criteria and press Enter:
 
   Select a logstream to view:                 Level of report detail:
   2   1.  RRS Archive log                      2   1.  Summary
       2.  RRS Unit of Recovery State logs          2.  Detailed
       3.  RRS Restart log
       4.  RRS Resource Manager Data log
 
   RRS Group Name . . . UTCPLXHD  Default is the sysplex name
   Output dataset  . . ATR.REPORT
 
   Optional filtering:
     Entries from . . . .             local date in yyyy/mm/dd format
                                    local time in hh:mm:ss format
     through  . . . . . .             local date in yyyy/mm/dd format
                                    local time in hh:mm:ss format
     UR identifier  . . .                                   (Options 1,2,3)
     RM name  . . . . . .                                   (Option 4)
       SURID                                                  (Options 1,2,3)

Note: If you have an active ARCHIVE log stream that has extensive activity, use the 
filtering options to reduce the size of the report, as you can easily exceed the size of the 
data set allocation and get a B37 abend.

 

 

 

Chapter 5. RRS operations 53



 

The RRS/MVS Log Stream Browse Detail Report panel, shown in Figure 5-8, is displayed 
when the RRS Unit of Recovery State logs are selected with the Detailed option. Notice that 
this display shows both the MAIN.UR and DELAYED.UR log stream content. Since our 
workload never generates records that go to the MAIN.UR log stream, the display accurately 
shows that it is empty.

Figure 5-8   RRS/MVS Log Stream Browse Detail Report

Figure 5-9 on page 55 displays the ARCHIVE log stream browse output panel. 

BROWSE    JOHNBTZ.ATR.REPORT                         Line 00000000 Col 001 080
   Command ===>                                                  Scroll ===> CSR
  ********************************* Top of Data **********************************
  RRS/MVS LOG STREAM BROWSE DETAIL  REPORT
 
  READING ATR.APPC.MAIN.UR           logstream
  ATR053I ATR.APPC.MAIN.UR           IS EMPTY,
          RC=00000008 RSN=00000846
 
  READING ATR.APPC.DELAYED.UR        logstream
 
  N9B      2003/08/07 14:43:12.440187 BLOCKID=0000000040C82811
    URID=B0DE58617E9CC0000000171401020000 LOGSTREAM=ATR.APPC.DELAYED.UR
    STATE=InCommit     EXITFLAGS=00800000 FLAGS=A0000000
    LUWID=USIBMT6.MF3LUA07 586199B04C09 0001  TID=             GTID=
 
    FORMATID=             (decimal)          (hexadecimal)
    GTRID=
 
    BQUAL=
 
    RMNAME=ATB.USIBMT6.MF3LUA07.IBM         ROLE=Participant
      CMITCODE=00000FFF BACKCODE=00000FFF PROTOCOL=PresumeNothing
 
 
    FORMATID=             (decimal)          (hexadecimal)
    GTRID=
 
    BQUAL=
 
  N9A      2003/08/07 14:43:12.676904 BLOCKID=0000000040C82DFD
    URID=B0DE58617E9CE5300000103901010000 LOGSTREAM=ATR.APPC.DELAYED.UR
    STATE=InDoubt      EXITFLAGS=00000000 FLAGS=A0000000
    LUWID=USIBMT6.MF2LUA07 586191565603 0001  TID=             GTID=
 
    FORMATID=             (decimal)          (hexadecimal)
    GTRID=
 
    BQUAL=
 
    RMNAME=ATB.USIBMT6.MF2IMS2.IBM          ROLE=DSRM
      CMITCODE=00000000 BACKCODE=00000FFF PROTOCOL=PresumeNothing
    RMNAME=IMS.IMR3____V061.STL.SANJOSE.IBM ROLE=Participant
      CMITCODE=00000FFF BACKCODE=00000FFF PROTOCOL=PresumeAbort

 

 

 

54 Systems Programmer’s Guide to RRS



 

Figure 5-9   ARCHIVE log stream browse output

In the upper-right corner of the screen it shows that an abend code was received. This 
happened because no filtering was used, and the data set ran out of space. Also note that the 
selected URs, which were placed in this document, show the completed states of records and 
the return codes from all the exits called.

We use the ARCHIVE log stream to determine the RRS view of the outcome of records when 
we execute recovery scenarios. For example, DB2 has a unit of recovery that is outstanding, 
but RRS does not know about it, so you cannot display the UR to get a time stamp. As 
previously stated, filtering using dates is extremely important in order to get a timely response 
when archive logs are large. 

   BROWSE    JOHNBTZ.ATR.REPORT                           Write failed with abend
   Command ===>                                                  Scroll ===> CSR
  ********************************* Top of Data **********************************
  RRS/MVS logstream BROWSE DETAIL  REPORT
 
  READING ATR.APPC.ARCHIVE           logstream
 
  N9A      2003/08/07 00:11:37.787861 BLOCKID=0000000000000001
    URID=B0DD95907E9A2C780000005601010000 JOBNAME=SP303    USERID=*
    SYNCPOINT=Commit  RETURN CODE=00000000
    START=2003/08/07 04:11:37.772092 COMPLETE=2003/08/07 04:11:37.787469
    EXITFLAGS=00800000
    LUWID=USIBMT6.MF1LUA07 958E44394D09 0001  TID=             GTID=
 
    FORMATID=             (decimal)          (hexadecimal)
    GTRID=
 
    BQUAL=
    RMNAME=ATB.USIBMT6.MF2PROT3.IBM         ROLE=DSRM
      FLAGS=100E0000 PROTOCOL=PresumeNothing
      StateCheck EXIT RC=00000000
      Prepare    EXIT RC=00000000
      DistSp     EXIT RC=00000000
      Commit     EXIT RC=00000000
      Backout    EXIT RC=Uncalled
      EndUr      EXIT RC=00000000
      ExitFailed EXIT RC=Uncalled
      Completion EXIT RC=00000000
      OnlyAgent  EXIT RC=Uncalled
    RMNAME=DSN.RRSATF.IBM.RDF2              ROLE=Participant
      FLAGS=10000000 PROTOCOL=PresumeNothing
      StateCheck EXIT RC=Uncalled
      Prepare    EXIT RC=00000010
      DistSp     EXIT RC=Uncalled
      Commit     EXIT RC=Uncalled
      Backout    EXIT RC=Uncalled
      EndUr      EXIT RC=Uncalled
      ExitFailed EXIT RC=Uncalled
      Completion EXIT RC=Uncalled
      OnlyAgent  EXIT RC=Uncalled

Note: We used a non-supported interface to quickly determine the time that a unit of 
recovery was created. The first eight digits of the URID are a part of a time stamp. When 
this is fed into a time-of-day conversion routine, the user can quickly determine the 
approximate time of the creation of the unit of recovery. Again, this is not a supported 
interface and could change in the future.

 

 

 

Chapter 5. RRS operations 55



 

Figure 5-10 shows the last panel that we will discuss. We chose to browse the Resource 
Manager Data log stream. This log stream gives the details for all of the resource managers 
that the RRS on this system knows about, since the last cold start.

Figure 5-10   RRS/MVS logstream BROWSE DETAIL REPORT

The first entry shows that IMS was brought down cleanly, which means that there were no 
outstanding protected units of recovery. In this case RRS allows the IMS subsystem to be 
restarted anywhere.

The second entry needs some interpretation: If DB2 were down, then this state implies that 
there were outstanding protected units of recovery that need resolving; therefore, when DB2 
is brought back up, it must be brought back up on the same system. However, in our case, we 
know that DB2 was up and running well, so RRS assumes that a resource manager must be 
restarted on the same system—and only changes that determination when the resource 
manager terminates. If there are no protected units of recovery, then RRS changes the state 
to allow restart anywhere.

 Menu  Utilities  Compilers  Help

   BROWSE    IBMUSER.ATR.REPORT                         Line 00000000 Col 001 080
   Command ===>                                                  Scroll ===> CSR
  ********************************* Top of Data **********************************
  RRS/MVS logstream BROWSE DETAIL  REPORT
 
  READING ATR.APPC.RM.DATA           logstream
 
  N9B      2003/08/07 16:17:43.231213 BLOCKID=000000000009FC91
   RESOURCE MANAGER=IMS.IMR4____V061.STL.SANJOSE.IBM LOGGING SYSTEM=N9B
    RESOURCE MANAGER MAY RESTART ON ANY SYSTEM
    RESOURCE MANAGER WAS LAST ACTIVE WITH RRS ON SYSTEM N9B
    LOG NAME IS IMS.IMR4____.OLDS.IBM
  M9A      2003/08/07 16:17:22.448002 BLOCKID=000000000009BB99
   RESOURCE MANAGER=DSN.RRSPAS.IBM.RDF1              LOGGING SYSTEM=M9A
    RESOURCE MANAGER MUST RESTART ON SYSTEM M9B
    RESOURCE MANAGER WAS LAST ACTIVE WITH RRS ON SYSTEM M9B
    LOG NAME IS DSN3.DB2.RRSSP.IBM.RDF1

Attention: In z/OS 1.6, RRS removes the restriction that a restart manager must restart on 
the same system if there are outstanding URs for that resource manager.

 

 

 

56 Systems Programmer’s Guide to RRS



 

Chapter 6. RRS performance and availability

A major factor affecting RRS performance and availability is directly related to the RRS 
logging environment. For this reason, proper tuning and placement of the RRS log streams 
become important elements in the RRS configuration. In this chapter, we discuss RRS 
performance and tuning in relation to Stem Logger definitions. We also describe how to 
monitor performance of the log streams.

This chapter covers the following topics:

� “Availability considerations for RRS log streams” on page 58

� “Performance considerations of RRS log streams” on page 59

6
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 57



 

6.1  Availability considerations for RRS log streams
For Coupling Facility log streams, System Logger always keeps two sets of the log data: one 
in the Coupling Facility, and one in each image’s dataspace. If the Coupling Facility fails, 
System Logger is capable of rebuilding the merged log data with the data coming from each 
image dataspace.

If your installation is sensitive to a double failure (for example, in which you could lose both 
the Coupling Facility and the z/OS image at the same time), then you can configure a further 
System Logger step to prevent any risk of losing data: use DASD staging data sets. In such a 
configuration, System Logger maintains the local copy of log data on DASD instead of the 
dataspace—and if an error occurs on the Coupling Facility and the z/OS image, the DASD 
backup can serve as a copy of valid data when System Logger restarts. 

Using the STG_DUPLEX and DUPLEXMODE parameters in the LOGR policy, you can 
request how you want System Logger to duplex Coupling Facility-resident log data for a log 
stream. Duplexing is done on a connection basis, depending on whether the system contains 
a single point of failure and is therefore vulnerable to loss of data. 

A failure-dependent environment is an environment where one failure can result in 
simultaneously losing both the Coupling Facility structure for a log stream and the local 
storage buffer copy of the data on the system connected to the Coupling Facility. 

You can specify STG_DUPLEX(YES) DUPLEXMODE(COND) when you cannot afford any 
data loss. This is a flexible way to protect against a single point of failure. With 
DUPLEXMODE(COND), System Logger will only duplex log data to staging data sets when 
needed. Connections that do not have a single point of failure can exploit the performance 
benefits of backing up log data to the local storage buffer. If DUPLEXMODE(UNCOND) is 
specified, System Logger unconditionally duplexes Coupling Facility data log data to DASD 
staging data sets, regardless of whether there is a single point of failure in the configuration. 

Since duplexing the logs might impact performance, and RRS can run effectively without 
duplexing, your installation must decide on the risk it can afford to take based on the following 
considerations:

� The RRS transaction state logs, MAIN.UR and DELAYED.UR, are large and frequently 
updated. Since RRS might be able to tolerate and recover from loss of data and gaps in its 
Unit of Recovery state logs, you may want to consider not duplexing these two logs in 
order to minimize the performance impact. 

For these log streams, where duplexing is less desirable, you can either specify 
DUPLEXMODE(COND) and let the System Logger determine when to duplex the 
Coupling Facility log data, or you can specify STG_DUPLEX(NO) to disable duplexing.

� RRS cannot tolerate or recover from a gap in the RM.DATA log. Any loss of data, 
unresolved gap, or permanent error in this log forces an RRS cold start. For availability 
reasons, we recommend that you unconditionally duplex RM.DATA log. This log is small 
and infrequently updated, so its impact on performance is minimal.

By default, DASD-only log streams are hardened on staging data sets.

Note: For further details about this topic, refer to System Programmer’s Guide to z/OS 
System Logger, SG24-6898.

 

 

 

58 Systems Programmer’s Guide to RRS



 

6.2  Performance considerations of RRS log streams
Because RRS writes data to a log stream, the interim storage defined for log data begins to 
fill, eventually reaching or exceeding its high threshold. You can specify the high and low 
thresholds for each RRS log stream to define when System Logger begins and ends the 
process of offloading (or moving) log data to DASD log data sets. For information on how 
System Logger offloading works, refer to Chapter 9 in z/OS MVS Setting Up a Sysplex, 
SA22-7625. 

Offloading works differently for CF and DASD-only log streams:

� For a CF log stream, offload processing moves data from CF to DASD offload data sets 
when the CF usage reaches the high threshold. 

� For a DASD-only log stream, offload processing is triggered by the staging data set usage. 

However, for either type of log stream, when a log stream reaches or exceeds its high 
threshold, System Logger begins offloading enough of the oldest log stream data to get to the 
low offload threshold point specified in the log stream definition. It is possible that a log 
stream might exceed the high threshold before offloading starts, because applications might 
keep writing data before System Logger can begin offload processing.

The log records in the MAIN.UR and the DELAYED.UR log streams are transient 
transactional data. They only last for the life of a transaction and are marked for deletion when 
the transaction completes. RRS also requires a relatively high amount of its transaction log 
data to reside in the Coupling Facility or local storage buffers for quick access. If the 
availability of the Coupling Facility space is not of concern to you, you can limit the offload 
activity by specifying a high threshold for offloading data to DASD. Therefore, for the 
MAIN.UR and DELAYED.UR logs, you can use a high threshold of 80% and a low threshold 
of 60%. 

However, the log records in the RM.DATA log are small and permanent; never offload during 
normal processing. You can use a high threshold of 80% and a low threshold of 60% for both 
the RM.DATA log and the RESTART log. If the ARCHIVE log is defined, you can use a low 
threshold of 0%.

The following factors also affect the frequency and overhead of the offload processing.

Coupling Facility size
Finding the optimum size for the Coupling Facility structure is important. This helps in 
handling the offload processing rate and in keeping more log data available on the Coupling 
Facility. If the Coupling Facility space allocated for a log stream is 100% full, all write requests 
against this log stream will be rejected and retried until offloading can complete. You can use 
SMF type 88 records to monitor the offload activity, and use the RMF™ Coupling Facility 
Report to evaluate the current Coupling Facility configuration, making make adjustments as 
necessary.

Staging data set size
For a Coupling Facility log stream, the high offload threshold applies to both the Coupling 
Facility space and the staging data set size. System Logger begins offload processing if either 
one exceeds the high threshold.

If the staging data sets are too small for a log stream, the staging data set keeps filling up and 
System Logger offloads Coupling Facility data to DASD frequently. If the staging data sets are 
filled completely, System Logger is not able to log data until it can free up staging data set 
space. In general, the sizing guideline for staging data sets is to make them large enough to 
hold all the log data in the Coupling Facility.

 

 

 

Chapter 6. RRS performance and availability 59



 

For a DASD-only log stream, offloading of log data to DASD log data sets is always triggered 
by staging data sets usage. If the staging data sets are too small, System Logger offloads log 
data from local storage buffers to DASD log data sets frequently.

6.2.1  RRS performance monitoring
Performance data for the RRS log streams can be produced by a number of tools. Reports 
can also be analyzed, to see if adjustments need to be made to the System Logger 
definitions.

� SMF 88 records are produced by the System Logger

� SMF 70-78 records are produced by RMF or equivalent product

SMF type 88 records can be formatted by the IXGPRT1 tool. Check for occurrences of DASD 
SHIFT, STRUCTURE FULL, ENTRY FULL and OFFLOAD for the RRS log streams. The 
ARCHIVE log stream is the only RRS log stream that should experience OFFLOAD 
processing because it is continually written to by RRS; no records are ever deleted.

RMF can provide many reports on structure usage and performance, as well as many other 
aspects of system performance.

Note: For further details on how to monitor RRS log streams and how to interpret the tools 
report, refer to System Programmer’s Guide to z/OS System Logger, SG24-6898.

 

 

 

60 Systems Programmer’s Guide to RRS



 

Chapter 7. RRS restart and recovery

In this chapter, we discuss RRS restart and resource manager restart and recovery. Although 
RRS restart and resource manager restart are two separate items, they must be considered 
together because in many instances RRS restart issues have a major effect on resource 
manager restart issues.

Examples of scenarios in which both RRS and RM restart need to be considered are: 

� RRS may fail on an image and need to be restarted. Resource managers on that image 
may also need to be restarted. 

� Resource managers may fail on an image and need to be restarted on that same image or 
on other images in the sysplex. RRS restart issues affect where those resource managers 
may restart.

� The whole image may fail and RRS recovery issues in the sysplex may affect where failed 
resource managers may restart.

This chapter covers the following topics:

� “RRS restart” on page 62

� “Resource manager restart” on page 63

� “Resource Manager restart restrictions” on page 63

7
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 61



 

7.1  RRS restart
As discussed in “RRS operations” on page 45, RRS can be stopped and restarted on a 
system, and perform a warm start or cold start, depending on the data it finds in its RM.DATA 
log stream.

7.1.1  RRS log takeover
In the event of a system failure or an extended RRS outage on a system, other instances of 
RRS on other images in the sysplex that are in the same RRS logging group can perform log 
takeover. See “RRS logging group name” on page 33 for a description of an RRS logging 
group.

If RRS on one systems fails, or if the whole image fails, the remaining RRS instances in the 
RRS logging group detect that an RRS instance has failed. This can be detected in two ways:

� Each RRS instance polls the logging group for failed RRS instances approximately every 
30 seconds.

� When a resource manager enters restart processing with an RRS instance, RRS checks 
for any failed RRS instances in the logging group.

When an RRS instance detects a failed RRS instance, it moves outstanding URs associated 
with the failed instance into the RRS Restart logs. The URs that are moved are:

� All non-cascaded or local cascaded URs that were logged on the failed RRS instance.

� All multisystem cascaded URs where the coordinator UR was logged on the failed RRS 
instance. The coordinator UR in a multisystem cascaded UR is the root UR of the UR tree, 
that is, the UR with no parent.

The RRS logs are shared across all RRS instances in the logging group, thus the restart data 
is available to all RRS instances in the logging group. When a resource manager restarts on 
one of the other images, RRS on that image is able to retrieve the outstanding URs for that 
resource manager from the Restart log stream.

When an RRS instance performs Log Takeover, it issues the following message:

ATR222I LOG TAKEOVER FOR SYSTEM sysname HAS COMPLETED SUCCESSFULLY.

In our testing we found the RRS Log Takeover performed within seconds of an RRS failure, 
but this was in a fairly active sysplex with 16 images.

 

 

 

62 Systems Programmer’s Guide to RRS



 

7.2  Resource manager restart
Resource manager restart and recovery is a complicated subject. Each resource manager, 
whether it is WebSphere Application Server, CICS, IMS, DB2 or so on, has its own particular 
restart issues and interacts with RRS differently. In Part 3, “RRS exploiters” on page 71, we 
discuss the major resource managers and examine their specific restart and recovery issues 
in relation to RRS.

Here, we describe what resource managers in general do with RRS in a restart situation.

7.2.1  Resource manager startup sequence
When a resource manager restarts, there are a number of actions it performs in order to 
interact with RRS to get information about any URs that RRS had logged.

A generalized resource manager startup sequence is:

1. The resource manager registers itself using Registration Services.

2. The resource manager sets its exits for the exit mangers. The two exit managers involved 
are Context Services and the Resource Recovery Service (RRS).

3. The resource manager uses the ATRIRLN service to retrieve the RRS logging group name 
and also to check if RRS has a record of the resource manager log name.

4. The resource manager uses ATRIBRS to begin restart processing with RRS.

7.2.2  Resource Manager restart restrictions
RRS imposes certain restart restrictions on resource managers if they fail while there are 
outstanding URs for that resource manager. These restrictions are z/OS release-dependent, 
so we point out which restrictions apply to which release of z/OS. In the following sections, we 
discuss issues for a single resource manager scenario and for multiple resource manager 
scenarios.

Single resource manager scenario
Prior to z/OS 1.6, if a resource manager fails, RRS determines whether there are any 
outstanding URs for that resource manager. If there are outstanding URs, then RRS marks 
that resource manager as having to restart on the same system. You must restart the 
resource manager on the same image in order for it to perform RRS restart processing.

If RRS also fails on that image, then RRS log takeover processing occurs and a resource 
manager may restart on any system in the RRS logging group. The practical implications of 
this are—unless you have a system failure, you are expected to restart a failed resource 
manager on the same image.

With z/OS 1.6 and above, RRS permits a resource manager to restart on any system that is a 
part of the RRS logging group, even if there are still URs outstanding for that resource 

Note: In this redbook, we limit our discussion on resource manager restart to issues 
specific to RRS. Most resource managers do extensive restart and recovery processing 
that may have nothing to with RRS. For example, DB2 for z/OS supports a number of 
attach facilities, some of which use RRS, and some that do not. DB2 restart and recovery 
processing occurs with or without RRS. If RRS is unavailable at DB2 restart, DB2 may 
have to postpone recovery for certain URs that were being coordinated by RRS.

 

 

 

Chapter 7. RRS restart and recovery 63



 

manager. However, this support does not mean that a resource manager can ignore group 
restart restrictions, as explained in the next section.

Multiple resource manager scenario
By multiple resource manager, we mean a scenario where multiple resource managers have 
an interest in a UR and one or more resource managers fail. The same restrictions apply to 
this scenario as apply to the single resource manager scenario—but there are further 
restrictions because RRS treats multiple resource managers involved in a UR as a group. 

In z/OS V1R2, RRS enabled “restart anywhere”, which allows its resource managers more 
flexibility as to where they are allowed to restart. RRS provided resource manager grouping 
relief by allowing resource managers to restart on any system in the same RRS logging group 
that supports multisystem cascaded transactions, provided RRS did not remain active on that 
system or the resource manager was not involved in any incomplete transactions with RRS.

Prior to z/OS 1.6, the baseline restart restriction still exists such that, if RRS remained active 
across resource manager failure and the resource manager had incomplete interests with 
RRS, then the resource manager needs to restart on the same system.

The constraints on the resource manager restart processing impose the following restrictions 
on the resource manager restart scenarios. 

� In a peer-level recovery environment

After a system failure, if you attempt to restart the resource managers on an alternate 
system, perform transactional recovery, and then move the resource managers back to the 
system where they were last active for new work - if the resource manager fails to clean up 
its incomplete transactions or somehow gets involved in new work, then you would not be 
able to move the resource manager back to the system where it was last active.

� In a different peer-level recovery scenario

When a resource manager fails, its partner resource manager on an alternate system will 
take over the failed resource manager's workload, which includes resolving the failed 
transactions and starting new work. However, with the current resource manager restart 
restrictions, this type of takeover is not possible.

Table 7-1 lists the resource manager restart environments and RRS restrictions on where the 
resource managers can restart.

Table 7-1   Resource manager - restart restrictions

Attention: The pre-z/OS 1.6 restart restriction does not necessarily mean you cannot 
restart a resource manager on a different image. It means that if you do restart the 
resource manager on a different image, then RRS returns an error code to the resource 
manager when the resource manager attempts restart processing with RRS (by calling the 
ATRIBRS service). The implications of this depend on the particular resource manager.

Environment for RM Restart Restrictions

The resource manager has no protected interest 
in any incomplete unit of recovery (UR).

No restart restrictions. The resource manager 
can start on any system in the sysplex.

The resource manager has an incomplete 
protected interest in one or more URs. RRS has 
remained active on the system where the 
resource manager was last active.

The resource manager must restart on the same 
system.

RRS fails any attempt by this resource manager 
to restart on a different system.

 

 

 

64 Systems Programmer’s Guide to RRS



 

In z/OS V1R2, RRS provided some restart grouping relief. However, if RRS remains active 
across resource manager failure, the restart grouping still governs where the resource 
manager can restart. Table 7-2 lists z/OS releases and their restart restrictions.

Table 7-2   Restart restrictions based on software level 

Even though RRS relaxed the resource manager restart grouping in z/OS V1R2, there may 
still be functional requirements for resource managers that have restart affinities to restart on 
the same system. For example, a WebSphere for z/OS server that connects to a CICS 
system using local attach requires that the CICS system be on the same z/OS image as itself. 
You can use ARM grouping or automation software to enforce related resource managers to 
restart as a group.

The resource manager has an incomplete 
protected interest in one or more URs. RRS did 
not remain active on the system where the 
resource manager was last active, but RRS might 
have already restarted on the system where it 
failed.

From the restart group, no resource managers 
are currently active with RRS.

The resource manager restarts on a system that 
supports Restart Anywhere:
No restart restriction. The resource manager can 
restart on this system

The resource manager has an incomplete 
protected interest in one or more URs. RRS did 
not remain active on the system where the 
resource manager was last active, but RRS might 
have already restarted on the system where it 
failed.

From the restart group, one or more resource 
managers are currently active with RRS.

The currently active resource manager(s) 
restarted on a system that supports Restart 
Anywhere:
The resource manager can restart on any system 
that supports Restart Anywhere, but would be 
restricted from restarting on a system without this 
support. 

Release Restart grouping Restart restrictions

OS/390 R9-R10
z/OS V1R1

If the first RM in the RM group 
restarts on any of these 
systems, the restart grouping 
applies. This forces other RMs 
in the group to restart on this 
system.

RM has to restart on the same 
system if RRS remained active 
across RM failure and the RM 
had incomplete transactions.

Z/OS V1R2 - V1R5 If the first RM in the restart 
group restarts on any of these 
systems, there is no restart 
grouping if the rest of the RM 
group restarts on one of these 
systems.

RM has to restart on the same 
system if RRS remained active 
across RM failure and the RM 
had incomplete transactions.

z/OS V1R6 and above If the first RM in the restart 
group restarts on any of these 
systems, there is no restart 
grouping if the rest of the RM 
group restarts on one of these 
systems. (same as z/OS 1.2).

RM is permitted to restart on 
any system, even if RRS had 
remained active across RRS 
failure and RM had incomplete 
transaction.

Environment for RM Restart Restrictions 

 

 

Chapter 7. RRS restart and recovery 65



 

7.2.3  Example of resource manager restart within the same RRS logging 
group

In this section, we describe resource manager restarts within a sysplex, assuming all systems 
are in the same RRS logging group. This is the normal mode of operation within a sysplex.

In the following scenario, SYS1 and SYS2 are in the same sysplex, with RRS on both 
systems in the same logging group. Then SYS1 fails. RMA and RMB had common work 
being coordinated by RRS on SYS1. 

If both SYS1 and SYS2 are running z/OS V1R2 (or above), both RMA and RMB can restart 
on SYS2, or RMA can restart on SYS2 and RMB can restart on SYS1 when it becomes active 
again. If RMA accepts new work on the recovery system, RRS will restrict it to have to restart 
on the new system. 

If SYS2 is running z/OS V1R2 (or above) and SYS1 is running a down-level z/OS release, if 
RMA restarts first on SYS2, then RMB will have to restart on SYS2 also due to the 
incompatibility of the z/OS releases. If SYS2 is running a release lower than z/OS V1R2, then 
RMA restarting on SYS2 will force RMB to restart on SYS2 because they are in the same 
restart group.

Prior to z/SO 1.6, if a resource manager restarting on the peer system later attempts to move 
back to its original system SYS1, the resource manager cannot have any outstanding 
transactions; otherwise, RRS will prevent it from moving to a different system.

7.2.4  Example of resource manager restart outside the same RRS logging 
group

In this section we describe a resource manager restart on a system that is not a part of the 
same RRS logging group (for example, a DR hot backup system that is not a part of the 
production sysplex).

In this scenario, RRS on SYS1 and SYS2 are in different RRS logging groups. SYS1 and 
SYS2 may or may not be in the same sysplex. RMA and RMB are registered RRS resource 
managers. 

RMA failed and is recovered from hot standby on SYS2. Registering as an RRS resource 
manager will not prevent the resource manager from restarting on a different system in the 
event of resource manager failure. RRS only enforces a resource manager having to restart 
on the same system if the resource manager has any outstanding transactions coordinated 
by RRS. 

Prior to z/OS 1.6, if RMA was involved in any RRS-coordinated transactions at the time of its 
failure, typically RMA needs to restart on the same system. However, since RMA is restarting 
on a system that is not in the same logging group as its original system, RRS has no 
knowledge of RMA’s old identity. RRS allows RMA to restart on SYSA. 

Note: In this scenario, RRS is not be able to complete any outstanding transactions involving 
RMA that were in progress on SYS1 prior to RMA’s failure.

7.2.5  Sample DB2/MQ restart scenario with RRS
This is a relatively simple scenario demonstrating a number of points about resource 
manager restart and showing how to check resource manager states using the RRS ISPF 
panels.

 

 

 

66 Systems Programmer’s Guide to RRS



 

We ran a batch job on system SC53 that updated both DB2 and MQ in one UR. We cancelled 
the MQ subsystem while the UR was in-flight. We then attempted to restart the MQ 
subsystem on a different image (SC52).

Both resource managers are running on SC53. Example 7-1 shows a screenshot from the 
RRS ISPF panels.

Example 7-1   Resource Manager list from the RRS panel

RRS Resource Manager List          Row 1 to 11 of 11
Command ===>                                                 Scroll ===> PAGE 
                                                                              
Commands: v-View Details u-View URs r-Remove Interest                         
                                                                              
S  RM Name                          State             System   Logging Group 

CSQ.RRSATF.IBM.MQCB              Run               SC53     WTSCPLX1      
CSQ.RRSATF.IBM.MQJ2              Run               SC53     WTSCPLX1      
CSQ.RRSATF.IBM.MQV1              Run               SC53     WTSCPLX1      
DSN.RRSATF.IBM.DB7A              Run               SC53     WTSCPLX1      
DSN.RRSATF.IBM.DB7J              Run               SC53     WTSCPLX1      
DSN.RRSATF.IBM.DB7L              Run               SC53     WTSCPLX1      
DSN.RRSATF.IBM.D7V1              Run               SC53     WTSCPLX1      
DSN.RRSPAS.IBM.DB7A              Run               SC53     WTSCPLX1      
DSN.RRSPAS.IBM.DB7J              Run               SC53     WTSCPLX1      
DSN.RRSPAS.IBM.DB7L              Run               SC53     WTSCPLX1      
DSN.RRSPAS.IBM.D7V1              Run               SC53     WTSCPLX1 

Example 7-1 is a list of resource managers on system SC53. The MQ subsystem we are 
interested in is MQV1; the resource manager name for that subsystem is 
CSQ.RRSATF.IBM.MQV1.The DB2 subsystem we are interested in is D7V1, and the 
resource manager for the RRS attach facility for D7V1 is DSN.RRSATF.IBM.D7V1.

Both resource managers have a state of Run. This means that the Resource Manager is fully 
active with RRS.

We now run a batch job that updates MQV1 and D7V1 within the same UR. The program was 
written to pause for a number of minutes before issuing a commit so that we have time to 
display panels and so on.

We can see the UR in progress by going into the RRS panels, taking option 2, which is the 
Display/Update RRS-related Resource Manager information panel, and viewing all URs for 
that resource manager by selecting u against that resource manger. We looked at the UR 
associated with MQV1, as shown in Example 7-2.

Example 7-2   Unit of Recovery for MQV1 Resource Manager

RRS Unit of Recovery List            Row 1 to 5 of 5 
Command ===>                                                 Scroll ===> PAGE  
                                                                               
Commands: v-View Details c-Commit b-Backout r-Remove Interest f-View UR Family 
                                                                               
S   UR Identifier                     System    Logging Group                  
                                         State         Type  Comments          
    BA6CEFFA7E6270000000000001020000  SC53      WTSCPLX1                       
                                         InFlight      Unpr                    
    BA6CEFFC7E6273740000000001020000  SC53      WTSCPLX1                       
                                         InFlight      Unpr                    
    BA6CEFFE7E6276E80000000001020000  SC53      WTSCPLX1                       
                                         InFlight      Unpr                    
    BA6CF0047E627A5C0000000001020000  SC53      WTSCPLX1                       

 

 

 

Chapter 7. RRS restart and recovery 67



 

                                         InFlight      Unpr                    
    BA6D07707E627DD00000000001020000  SC53      WTSCPLX1                       
                                         InFlight      Prot                    

In Example 7-2, we can see that there is only one instance of an protected conversation, 
which is the one we are interested in. 

We selected that UR by using a v to see the UR details screen; refer to Example 7-3.

Example 7-3   Unit of Recovery Details information panel

                         RRS Unit of Recovery Details          Row 1 to 2 of 2 
Command ===>                                                 Scroll ===> PAGE  
                                                                               
Commands r-Remove Interest v-View URI Details                                  
                                                                               
UR identifier : BA6D07707E627DD00000000001020000                               
Create time : 2003/12/05 18:50:23.990574      Comments :                       
UR state : InFlight      UR type : Prot                                        
System : SC53      Logging Group : WTSCPLX1                                    
SURID : N/A                                                                    
Work Manager Name : SC53.MURPHYAR.0026                                         
   Display Work IDs           /  Display IDs formatted                         
   Luwid  . : Not Present                                                      
   Eid  . . : Not Present                                                      
   Xid  . . : Not Present                                                      
Expressions of Interest:                                                       
S   RM Name                           Type  Role                               
    CSQ.RRSATF.IBM.MQV1               Prot  Participant                        
    DSN.RRSATF.IBM.D7V1               Prot  Participant 

The UR details panel shows that the UR has two resource managers participating. Each has 
a role of Participant, which means that RRS acts as the syncpoint coordinator. The UR state 
is shown as InFlight, meaning this UR has not reached a commit or backout point yet. We 
now cancel the MQV1 subsystem. RRS is notified that the RM has failed by the following 
message:

ATR169I RRS HAS UNSET EXITS FOR RESOURCE MANAGER CSQ.RRSATF.IBM.MQV1 REASON: 
UNREGISTERED        

Next, we go to the RRS panel and select option Browse an RRS log stream, and then select 
RRS Resource Manager Data log to browse the RRS resource manager data log. We should 
see data as shown in Example 7-4:

Example 7-4   Resource Manager Data log

SC66     2003/12/05 14:12:39.408437 BLOCKID=0000000001B041D1           
 RESOURCE MANAGER=CSQ.RRSATF.IBM.MQV1              LOGGING SYSTEM=SC66 
  RESOURCE MANAGER MUST RESTART ON SYSTEM SC53                         
  RESOURCE MANAGER WAS LAST ACTIVE WITH RRS ON SYSTEM SC53             
  LOG NAME IS CSQ3.MQ.RRS.IBM.MQV1 

RRS has marked MQV1 as: must restart on system SC53.

 

 

 

68 Systems Programmer’s Guide to RRS



 

By checking the RRS Resource Manager List (under the option Display/Update RRS related 
Resource Manager information on the main RRS panel), we can view the status of the MQV1 
resource manager on SC53; see Example 7-5.

Example 7-5   Resource Manager List

RRS Resource Manager List          Row 1 to 11 of 1
Command ===>                                                 Scroll ===> PAGE
                                                                             
Commands: v-View Details u-View URs r-Remove Interest                        
                                                                             
S   RM Name                          State             System   Logging Group
    CSQ.RRSATF.IBM.MQCB              Run               SC53     WTSCPLX1     
    CSQ.RRSATF.IBM.MQJ2              Run               SC53     WTSCPLX1     
    CSQ.RRSATF.IBM.MQV1              Reset             SC53     WTSCPLX1     
    DSN.RRSATF.IBM.DB7A              Run               SC53     WTSCPLX1     
    DSN.RRSATF.IBM.DB7J              Run               SC53     WTSCPLX1     
    DSN.RRSATF.IBM.DB7L              Run               SC53     WTSCPLX1     
    DSN.RRSATF.IBM.D7V1              Run               SC53     WTSCPLX1     
    DSN.RRSPAS.IBM.DB7A              Run               SC53     WTSCPLX1     
    DSN.RRSPAS.IBM.DB7J              Run               SC53     WTSCPLX1     
    DSN.RRSPAS.IBM.DB7L              Run               SC53     WTSCPLX1     
    DSN.RRSPAS.IBM.D7V1              Run               SC53     WTSCPLX1 

Resource manager CSQ.RRSATF.IBM.MGV1 shows as Reset, which means that the 
resource manager is no longer known to RRS on system SC53.

We now restart MQV1 on SC52 to see what happens when we attempt to start a resource 
manager on a different system in the sysplex, when RRS has not marked it restart anywhere; 
see Example 7-6.

Example 7-6   MQV1 restart log

CSQR001I -MQV1 RESTART INITIATED                                     
CSQR003I -MQV1 RESTART - PRIOR CHECKPOINT RBA=00002E34381C           
CSQR004I -MQV1 RESTART - UR COUNTS - 744                             
IN COMMIT=0, INDOUBT=0, INFLIGHT=1, IN BACKOUT=0                     
CSQR007I -MQV1 UR STATUS 745                                         
T  CON-ID        THREAD-XREF        S    URID            TIME        
- -------- ------------------------ ------------- -------------------
R RRSBATCH                          F00002E3429E3 2003-12-05 14:13:02
....
...
CSQR030I -MQV1 Forward recovery log range 756                
from RBA=00002E34381C to RBA=00002E3443AA                    
CSQR005I -MQV1 RESTART - FORWARD RECOVERY COMPLETE - 757     
IN COMMIT=0, INDOUBT=0                                       
CSQR032I -MQV1 Backward recovery log range 758               
from RBA=00002E3443AA to RBA=00002E3429E3                    
CSQR006I -MQV1 RESTART - BACKWARD RECOVERY COMPLETE - 759    
INFLIGHT=0, IN BACKOUT=0                                     
CSQR002I -MQV1 RESTART COMPLETED 

We see that MQV1 begins normal restart processing, finds one inflight UR from its logs, and 
backs it out. Note that MQV1 does not need to communicate to RRS to resolve this 
inconsistency since an inflight UR will always be resolved by being backed out.

MQV1 then attempts to perform restart processing with RRS on SC52, as shown in 
Example 7-7.

 

 

 

Chapter 7. RRS restart and recovery 69



 

Example 7-7   MQV1 restart processing

CSQM065E -MQV1 CSQMIGQA MQCONNX failed, reason=2350              
CSQ3017I -MQV1 CSQ3RRSR RRS function ATRIBRS failed, RC=00000F02 

MQ issues the CSQ3017I message to tell us that ATRIBRS has failed with a return code of 
F02. By referring to MVS Programming: Resource Recovery, we find that a return code F02 
from an ATRIBRS call means an ATR_RESTART_WRONG_SYSTEM error.

If now we view the RRS resource manager list panel, we see the content shown in 
Example 7-8.

Example 7-8   Resource Manager List after MQV1 restart

                          RRS Resource Manager List          Row 1 to 13 of 1
Command ===>                                                 Scroll ===> PAGE
                                                                             
Commands: v-View Details u-View URs r-Remove Interest                        
                                                                             
S   RM Name                          State             System   Logging Group
    BBO.CLC11.CLUC11.WSC11.IBM       Reset             SC52     WTSCPLX1     
    BBO.CLHA1.BBON004.BBON004.IBM    Run               SC52     WTSCPLX1     
    BBO.CLHA1.CLHA1.WSC11D.IBM       Set               SC52     WTSCPLX1     
    BBO.CLHA1.CLUC11.WSC11.IBM       Run               SC52     WTSCPLX1     
    CSQ.RRSATF.IBM.MQV1              Set               SC52     WTSCPLX1     
    CSQ.RRSATF.IBM.MQ4D              Run               SC52     WTSCPLX1     
    DFHRXDM.SCSCERW3.IBM             Run               SC52     WTSCPLX1     
    DSN.RRSATF.IBM.DB4D              Run               SC52     WTSCPLX1     
    DSN.RRSATF.IBM.D7V1              Run               SC52     WTSCPLX1     
    DSN.RRSPAS.IBM.DB4D              Run               SC52     WTSCPLX1     
    DSN.RRSPAS.IBM.D7V1              Run               SC52     WTSCPLX1     
    HWS.IM4DCONNV021.SVL.SANJOSE.IBM Run               SC52     WTSCPLX1     
    IMS.IM4D____V081.STL.SANJOSE.IBM Run               SC52     WTSCPLX1 

MQV1 shows a state of Set, which indicates the resource manager has started and set its 
exits with RRS, but has not started RRS restart processing. This is because RRS rejected the 
ATRIBRS call from MQV1. MQV1 is now not in a position to use RRS facilities. This will 
prevent it from joining a queue sharing group because it uses RRSAF to attach to DB2, for 
example.

In this scenario we could stop MQV1 on SC52 and restart it on SC53—or we could cancel 
RRS on SC53. Note that both actions are disruptive.

Remember that each resource manager exhibits different behavior in this type of scenario. 
WebSphere Application Server, for example, cannot start without being able to connect to 
RRS, so in this scenario it would just abend on startup on SC53. WebSphere Application 
Server only restarts on SC52 if RRS remains active on SC52.

Note: z/OS 1.6 eases the restrictions that can result in the previous scenario.

 

 

 

70 Systems Programmer’s Guide to RRS



 

Part 3 RRS exploiters

In this part, we take a closer look at resource managers that use RRS services.

Part 3
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 71



 

 

 

 

72 Systems Programmer’s Guide to RRS



 

Chapter 8. WebSphere Application Server 
for z/OS

In this chapter, we describe how WebSphere Application Server for z/OS V5.1 uses RRS. 

The chapter covers the following topics:

� Introduction to WebSphere Application Server V5

� J2EE™ terminology

� WebSphere Application Server features that exploit RRS

� WebSphere Application Server connectors for DB2, CICS, IMS and WebSphere MQ

� Restart and recovery issues with RRS

� Test scenarios showing RRS archive logs

8
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 73



 

8.1  Introduction
WebSphere Application Server for z/OS is a part of the WebSphere Application Server family 
from IBM. Websphere Application Server provides a Java 2 Enterprise Edition (J2EE) and 
Web Services-compliant application server. WebSphere Application Server for z/OS V5 is 
compliant with the J2EE 1.3 specification.

WebSphere Application Server provides the ability to run an EJB application that may 
connect to many data sources (such as IMS, CICS or DB2) in a fully transactional 
environment.

WebSphere Application Server for z/OS exploits many z/OS functions to leverage the 
qualities of service provided in a z/OS environment. For example, WLM is used for the 
scheduling of application servers and Sysplex Distributor can be used to provide high 
availability configurations in a sysplex environment.

RRS is used by WebSphere Application Server as an integral part of its transactional support. 
Before describing how WebSphere Application Server uses RRS, we discuss transactional 
support in general in a J2EE 1.3 environment and explain J2EE terminology. 

8.2  J2EE terminology
In this section we briefly discuss J2EE terminology as it relates to transaction support in a 
J2EE environment. The transactional model used by J2EE conforms to open standards such 
as the X/Open DTP model.

A J2EE application server implementation provides a transaction manager that coordinates 
updates to various resource managers. The transaction manager must be able to manage 
work contexts and must be able to move work contexts from one transaction manager to 
another. The specification that defines how transaction managers implement these functions 
is called Java Transaction Services (JTS). JTS maps to the CORBA Object Transaction 
Service (OTS) specification. JTS uses most of the same interfaces as OTS, and 
communications between transaction mangers uses the IIOP protocol, as with OTS.

The transaction manager must communicate with the application server, the application 
programs, and the resource managers. The standard API used to provide these functions is 
called the Java Transaction API (JTA). The JTA defines a set of high level interfaces that a 
transaction manager, application program, and resource manager use to enable transactional 
support. In this chapter we focus on the connection between the transaction manager and a 
resource manager. 

The X/Open XA protocol defines how a transaction manager communicates with resource 
managers with two-phase commit support. In the J2EE platform, the XA protocol is 
implemented by the JTA XAResource interface.

A J2EE platform provides support for two type of transactions: resource manager local 
transactions (RMLT) and JTA (or global) transactions. A global transaction supports updates 
to multiple distributed resource managers within one unit of recovery, whereas a local 
transaction may only update one resource manager within a unit of recovery.

A resource manager must be XA-compliant in order to participate in a global transaction 
unless the provider of the J2EE platform and resource manager build in extra support for 
two-phase commit processing not based on XA.

 

 

 

74 Systems Programmer’s Guide to RRS



 

The JTA specification defines three resource manager types, as described here:

� JDBC™-compliant database managers 

Java Database Connectivity (JDBC) is a standardize Java interface to a database 
manager. The database can be a relational database like DB2, or non-relational like 
IMS/DB. The JDBC driver may or may not be XA-compliant. Many database manager 
providers supply both an XA-compliant and a non-XA compliant JDBC driver.

� JMS Providers 

Java Message Service is a standardize Java interface to an enterprise messaging system 
like MQSeries.The JMS driver may be XA-compliant or non-XA-compliant.

� J2EE Connector Architecture (JCA)-compliant enterprise information systems

The J2EE JCA defines a standard architecture for connecting J2EE platforms to 
heterogeneous enterprise information systems (EIS). Examples of JCA-compliant EIS are 
the CICS transaction gateway and the IMS connect products. The interface between the 
application server and EIS is called a resource adapter. Resource adapters may be 
XA-compliant or non-XA-compliant.

A global transaction may access any or all of these resource manager types within a single 
transaction. The J2EE 1.3 specification says that a J2EE platform must allow access to the 
following resource manager types within the scope of a single transaction:

� A single JDBC database
� A single JMS provider
� Multiple JCA-compliant EISs, provided they provide XA-compliant resource adapters

8.3  RRS exploitation
Unlike the more traditional resource managers such as CICS or IMS, WebSphere Application 
Server for z/OS uses RRS services as a part of its base implementation to provide two-phase 
commit support. WebSphere Application Server for z/OS does not start without RRS being 
available, and it abends in the event of an RRS failure.

In addition to support of XA-capable resource managers, WebSphere Application Server for 
z/OS supports resource managers that provide an RRS-enabled resource adapter. 
WebSphere Application Server for z/OS refers to this support as RRSTransactional. 
Currently, any resource managers that are connected to using RRS must reside on the same 
z/OS image as the WebSphere Application Server.

We can look at three types of two-phase commit support provided by the transaction manager 
services in WebSphere Application Server for z/OS:

1. OTS support (distributed two-phase commit supported) as defined by OMG 

OTS support uses RRS to hold expressions of interest and to take a SDSRM role.

2. XA J2EE (distributed two-phase commit supported)

If there are multiple RMs involved, then RRS is used to hold expressions of interest. 
WebSphere Application Server takes an SDSRM role. Note again that RRS is used even if 
no RRS enable adapters are involved.

Important: WebSphere Application Server always requires RRS, even if there are no 
RRSTransactional resource managers being used. WebSphere Application Server uses 
RRS services to provide part of its transactional support for XA-capable resource 
managers,.

 

 

 

Chapter 8. WebSphere Application Server for z/OS 75



 

3. RRS-enabled adapters 

If all RMs involved in a transaction support RRS, then WebSphere Application Server 
allows RRS to take on the role of syncpoint coordinator. If there is a mixture of XA and 
RRS RMs, then RRS will take an SDSRM role.

Some resource adapters on z/OS may support both XA and RRS modes of operation, 
depending on how they are configured. The RRS mode of operation is usually restricted to 
instances where both WebSphere Application Server and the resource manager reside on 
the same z/OS image. Examples of these resource managers are discussed below. 

A global transaction in WebSphere Application Server may use multiple resource managers 
that use either RRS or XA resource adapters, and WebSphere Application Server must 
coordinate the updates across all RMs. To do this, WebSphere Application Server generally 
takes an RRS SDSRM role so that it becomes the syncpoint coordinator and RRS drives the 
commit or backout processing only for those resource managers that support RRS. Refer to 
Chapter 3, “Distributed RRS” on page 23 for a discussion of distributed two-phase commit 
and how it is supported in RRS.

Even if there are no RRSTransactional resource managers involved in a global transaction, 
WebSphere Application Server still uses RRS to hold expressions of interest and it takes an 
RRS SDSRM role. WebSphere Application Server does not have its own logging system, so it 
uses RRS to provide this function. This is important when looking at restart and recovery 
issues because WebSphere Application Server requires access to data in RRS logs even if 
you never use RRS-enabled resource managers.

8.4  Connectors for JDBC, JMS and JCA
This section reviews the available connectors for WebSphere Application Server that allow an 
application to access resource managers such as DB2, IMS, CICS and MQseries. Here, we 
concentrate on the two-phase commit support provided with these adapters. For a full 
description of these adapters, see WebSphere for z/OS V5 Connectivity Handbook, 
SG24-7064.

8.4.1  IMS connectors
There are two ways to connect from WebSphere Application Server to IMS. One way is to use 
the IMS connect product, and the other way is to use the IMS JDBC support provided as a 
part of IMS/DB. In the following sections, we describe both methods in more detail.

IMS Connect V2.1
IMS connect provides a bridge to IMS from TCP/IP-attached or local clients using the IMS 
Java connector. IMS connect uses the OTMA interface to attach to IMS. WebSphere 
Application Server for z/OS supports using IMS connect in both TCP/IP attach or local attach 
mode. IMS connect always uses RRS because IMS OTMA attach requires that the client (IMS 
connect) be an RRS resource manager. The behavior of IMS connect depends on whether 
TCP/IP attach or local attach is used; here we describe both scenarios.

TCP/IP attach to IMS connect
The resource adapter for WebSphere Application Server for z/OS supplied by IMS connect is 
XA-compliant when operating in TCP/IP attach mode. This means that two-phase commit is 
supported from WebSphere Application Server transactions to a TCP/IP-connected IMS 
connect server. In this environment, IMS connect always takes on an RRS SDSRM role. This 

 

 

 

76 Systems Programmer’s Guide to RRS



 

allows IMS connect to act as a communications resource manager (CRM) and to interface to 
other external transaction managers using XA protocol. 

In this environment, as shown in Figure 8-1, the IMS connect server and the OTMA-attached 
IMS system must reside on the same z/O image—and RRS must be active on that image. 
The WebSphere Application Server can be on a remote z/OS image, although it is possible to 
configure the resource adapter to attach in remote mode even if the WebSphere Application 
Server resides on the same z/OS images as IMS connect and the IMS system. However, this 
is not a recommended configuration. Local attach is more efficient and provides for better 
restart and recovery because RRS is used.

Figure 8-1   IMS connect in TCP/IP attach mode

WebSphere Application Server local attach to IMS connect
The resource adapter for WebSphere Application Server for z/OS supplied by IMS connect is 
RRSTransactional when operating in local attach mode. This means that two-phase commit is 
supported from WebSphere Application Server transactions to a locally connected IMS 
connect server. 

In local mode, the resource adapter communicates to IMS connect using the MVS Program 
Call (PC) facility. In this environment IMS connect does not take on an RRS SDSRM role 
because it does not need to communicate with an external transaction manager using XA 
protocol. In this scenario, WebSphere Application Server may take an RRS SDSRM role for 
this transaction, depending on what other type of resource managers are involved. If all 
resource managers involved are RRSTransactional, then RRS is the syncpoint manager.

In the local attach environment, WebSphere Application Server, the IMS connect server and 
the OTMA-attached IMS system must reside on the same z/OS image and RRS must be 
active on that image; see Figure 8-2.

SYSPLEXSYSPLEX

z/OS

WebSphere
Application Server

IMS RA

z/OS

RRS

IMS
Connect IMS2

RRS

XCF

TCP/IP

 

 

 

Chapter 8. WebSphere Application Server for z/OS 77



 

Figure 8-2   IMS connect in local attach mode

IMS JDBC connector
IMS V8 provides a JCA-compliant resource adapter that provides a JDBC interface to an IMS 
system. The connection to IMS is via the IMS Open Database Access (ODBA) interface.

From a WebSphere Application Server view, the resource adapter is RRSTransactional and 
must be run as a part of a global transaction.The IMS JDBC resource adapter does not 
support Localtran. In this scenario, WebSphere Application Server may take an RRS SDSRM 
role for this transaction, depending on what other type of resource managers are involved. If 
all resource managers involved are RRSTransactional, then RRS is the syncpoint manager. If 
there are XA resource managers involved, then WebSphere Application Server assumes the 
SDSRM role.

For the IMS JDBC connect, WebSphere Application Server, and the ODBA-attached IMS 
system must reside on the same z/OS image and RRS must be active on that image.

8.4.2  CICS connectors
WebSphere Application Server can connect to local or remote CICS systems using the CICS 
Transaction Gateway (CTG) product. The current version of CTG at the time of writing is 
Version 5.1. 

CTG V5.1 is a set of client and server components that allow a Java application to invoke 
services in an attached CICS server. The CTG provides JCA-compliant resource adapters 
that use either CICS ECI or EPI. In a WebSphere Application Server for z/OS environment, 
only the ECI adapter is supported. 

The CICS CTG can operate in two modes: local attach or remote attach. For remote attach, a 
CTG gateway address space is required on z/OS that communicates to a CICS system 
residing on the same z/Os image using the CICS EXCI interface.

WebSphere Application Server local attach to CTG
The ECI resource adapter for WebSphere Application Server for z/OS supplied by CTG is 
RRSTransactional when operating in local attach mode. This means that two- phase commit 
is supported from WebSphere Application Server transactions connect to a CICS system that 
resides on the same z/OS image.

In local mode, there is no requirement for the CTG Gateway address space. The resource 
adapter communicates to a CICS system directly using EXCI. In this scenario, WebSphere 
Application Server may take an RRS SDSRM role for this transaction, depending on what 
other types of resource managers are involved. If all resource managers involved are 
RRSTransactional, then RRS is the syncpoint manager.

z/OS

WebSphere
Application Server

IMS RA

RRS

IMS
Connect IMS1

Local
Option

XCF

 

 

 

78 Systems Programmer’s Guide to RRS



 

In the local attach environment, WebSphere Application Server and the CICS systems must 
reside on the same z/OS image and RRS must be active on that image.

WebSphere Application Server TCP/IP attach to CTG
The ECI resource adapter for WebSphere Application Server for z/OS supplied by CTG is not 
XA-compliant when operating in remote attach mode. This means that two-phase commit is 
not supported from WebSphere Application Server transactions connect to a CICS system 
via the CTG gateway address space. 

In remote mode, WebSphere Application Server on z/OS connects to a CTG Gateway 
address space via TCP/IP and the CTG gateway address space connects to a local CICS 
system using the EXCI interface.

Even though the remote CICS attachment does not support two-phase commit, it may be 
possible to include a connection to a remote CICS system as part of a WebSphere 
Application Server Global transaction. The JCA provides for an option called last resource 
commit optimization (also known as last agent optimization) which allows the use of a single 
one-phase commit resource manager in a global transaction as long as any other resource 
managers in the transaction support two-phase commit.

WebSphere Application Server V5 provides support for this using a function known as Last 
Participant Support (LPS). WebSphere Application Server will prepare all the RMs that 
support two-phase commit and if they all vote to commit, then WebSphere Application Server 
can issue a commit to the one-phase commit RM, followed by a commit to the two-phase 
commit RMs.

Figure 8-3   WebSphere Application Server connection to CICS using the CTG

8.4.3  DB2 connector
WebSphere Application Server can connect to DB2 using one of the DB2 for z/OS supplied 
Java Database Connectivity (JDBC) drivers. JDBC is a Java API used for accessing 
databases. 

SYSPLEXSYSPLEX

z/OS

WebSphere
Application Server

RA

z/OS

RRS

CICS
Tran GW CICS

RRS

TCP/IP

 

 

 

Chapter 8. WebSphere Application Server for z/OS 79



 

The JDBC standard defines four different type of drivers, as described here:

� Type 1 driver

This driver provides a bridge to an ODBC driver. It is not commonly used any more.

� Type 2 driver

This driver provides platform-specific and database-specific code to access the database. 
Type 2 drivers usually offer the best performance, but a specific driver is required for each 
platform and database combination. 

� Type 3 driver

This driver provides a bridge to a middleware product that connects to the database. The 
driver is usually written in Java, and it is portable across platforms

� Type 4 driver

This driver connects directly to the database using a standard protocol supported by the 
database server. For example, Type 4 drivers for DB2 use the DRDA protocol to connect to 
a DB2 database server directly. Type 4 drivers are written entirely in Java and are thus 
much easier to port across platforms. 

DB2 for z/OS provides two versions of JDBC driver, both of which are supported by 
WebSphere Application Server V5. In the following descriptions, we refer to a JDBC driver 
(which DB2 for z/OS supplies) and a WebSphere Application Server JDBC provider (which is 
an entry under the WebSphere Application Server admin panels used when defining a 
datasource).

DB2 for z/OS local JDBC driver
This driver is supplied with DB2 for z/OS V5 and above and is often called the “legacy JDBC 
driver”. The WebSphere Application Server V5 JDBC provider that supports this driver is 
called the DB2 for zOS Local JDBC provider (RRS).

It is a JDBC type 2 driver and is RRSTransactional. The type 2 driver uses the DB2 RRSAF 
interface to connect to DB2—and both WebSphere Application Server and the DB2 
subsystem must reside on the same z/OS image. 

IBM DB2 universal JDBC driver for z/OS
The DB2 universal JDBC driver for z/OS is supplied with DB2 for z/OS V8. It is also available 
as a PTF for DB2 for z/OS V7. 

WebSphere Application Server V5 level W502002 supports this new driver by adding two new 
JDBC providers that can be configured, as described here:

DB2 universal JDBC Provider 
Selecting this provider uses the driver without XA support; when configuring the datasource, 
you can specify if you want to use the driver as a type 2 or a type 4 driver. 

If configured as a type 2 driver, this driver supports RRSTransactional and behaves like the 
legacy JDBC driver. RRSAF connects to the DB2 subsystem, which must be on the same 
z/OS image as WebSphere Application Server. A transaction in this environment must be 
defined as Global. WebSphere Application Server expresses an interest in the UR to RRS 
and takes on the RRS SDSRM role if there are other RMs involved in the transaction that are 
XA-compliant.

If configured as a JDBC type 4 driver, then there is no two-phase commit support provided. 
The DB2 subsystem can be local or remote because the DRDA protocol is used to connect to 
it. This environment supports only Localtran.

 

 

 

80 Systems Programmer’s Guide to RRS



 

In an environment where both WebSphere Application Server and the DB2 subsystem reside 
on the same z/OS image, it is preferable to configure the driver as JDBC type 2 for 
performance reasons. RRSAF attach will always perform better than DRDA. 

DB2 universal JDBC Provider (XA)
Selecting this provider uses the driver with XA support, and the driver can only be configured 
as a JDBC type 4 driver.

The DB2 subsystem can be local or remote because the DRDA protocol is used to connect to 
it. RRSAF cannot be used in this environment, but WebSphere Application Server still uses 
RRS to express an interest in the UR and takes the RRS SDSRM role if there are other RMs 
involved in the transaction that are RRSTransactional.

8.4.4  WebSphere MQ connector
The J2EE specification 1.3 requires that a J2EE platform must provide a Java message 
Service (JMS) implementation. JMS is the Java API used for accessing messaging services.

WebSphere Application Server V5 satisfies the J2EE 1.3 specification by including a JMS 
provider in the product. This is referred to as the Embedded WebSphere JMS Provider, the 
WebSphere JMS Provider, or simply embedded messaging. It can be installed optionally as a 
JMS provider. In addition, WebSphere provides the capability to install an external JMS 
provider, such as IBM WebSphere MQ or a generic JMS provider.

The following sections describe the Websphere MQseries JMS provider.

WebSphere MQ JMS provider
MQseries V5.3 provides an RRSTransactional driver. When you select this provider, you must 
configure the WebSphere Application Server Queue Connection Factory to use MQ Bindings 
support because MQ client connection is not supported. 

In this environment, WebSphere Application Server and the Websphere MQseries Queue 
manager must reside on the same z/OS image. The driver uses the MQSeries RRS adapter 
to connect to the Queue manager. WebSphere Application Server expresses an interest in 
the UR to RRS and takes on the RRS SDSRM role if there are other RMs involved in the 
transaction that are XA-compliant.

8.4.5  Connector summary table
Table 8-1 provides a summary of the WebSphere Application Server connectors and 
indicates which ones are RRStransactional or XA-compliant.

Table 8-1   Connector summary

Connector RRSTransactional XA-compliant? Two-phase supported 
to remote system

DB2 for z/OS JDBC 
(RRS)

Yes No No

DB2 Universal JDBC 
non-XA type 2

Yes No No

DB2 Universal JDBC 
non-XA type 4

No No No

 

 

 

Chapter 8. WebSphere Application Server for z/OS 81



 

In Table 8-1, the “Two-phase commit supported to remote systems” column indicates whether 
two-phase commit is supported to resource managers that reside on a different z/OS to 
WebSphere Application Server. Be aware that a No in this column does not necessarily mean 
an update to this remote resource manager cannot be a part of a WebSphere Application 
Server global transaction; as explained in 8.4.2, “CICS connectors” on page 78, WebSphere 
Application Server supports one instance of a one-phase commit-capable resource manager 
within a Global transaction as long as all the other resource managers involved support 
two-phase commit.

8.4.6  RRS versus XA resource adapters
In general, if you are connecting WebSphere Application Server to an resource manager on 
the same z/OS image and you have a choice of RRSTransactional or XA, you should use 
RRSTransactional for the following reasons:

� Performance is better with RRSTransactional because these connectors normally use 
native z/OS calls and resource-specific interfaces instead of the TCP/IP connectivity used 
with XA resource managers.

� Resource manager restart is better with RRS. RRS is superior because once a decision is 
hardened within RRS, resource managers can start independently of each other and they 
can resolve in-doubt URs by communicating to RRS. In contrast, XA RMs need to 
communicate with each other in order to communicate a final decision, so both resource 
managers need to be active at the same time for restart processing to work.

8.5  Restart and recovery issues with RRS
As mentioned, WebSphere Application Server for z/OS supports both X- capable resource 
managers and RRSTransactional resource managers. Information relating to the 
RRSTransactional resource managers and XA-capable resource managers is held in RRS. In 
addition, XA partner information is held in an HFS log.

8.5.1  RRS failure
If RRS fails, then WebSphere for z/OS abends. WebSphere Application Server requires RRS 
to provide its transactional support and cannot function without it. RRS must be restarted on 
the image before WebSphere Application Server can be restarted on that image.

DB2 Universal JDBC 
XA type 4

N/A Yes Yes

CICS transaction 
Gateway

Yes No No

IMS Connect Yes Yes Yes 

IMS JDBC Yes N/A No

WebSphere MQ JMS Yes N/A No

WebSphere 
Application Server 
integrated JMS

No Yes Yes

Connector RRSTransactional XA-compliant? Two-phase supported 
to remote system

 

 

 

82 Systems Programmer’s Guide to RRS



 

Example 8-1 shows the messages produced if RRS becomes unavailable while WebSphere 
Application Server is running.

Example 8-1   RRS failure sample messages

BBOO0133I WEBSPHERE FOR Z/OS STOP COMMAND ISSUED FOR SERVER WSDMN.         
BBOT0024A RRS HAS BECOME UNAVAILABLE.  WEBSPHERE MUST BE RESTARTED.        
BBOO0035W TERMINATING THE CURRENT PROCESS, REASON=C9C218F7.                
BBOO0009E WEBSPHERE FOR Z/OS DAEMON WSDMN ENDED ABNORMALLY,                
REASON=C9C212C4.

RRS must be restarted before the WebSphere Application Server can be restarted. If RRS 
cannot be started, then WebSphere Application Server must be restarted on another z/OS 
image where RRS is operational and is a part of the same RRS logging group as the failed 
instance.

8.5.2  Failure and restart
In RRS terms, WebSphere Application Server is a communications resource manager, not a 
data resource manager. As such, it does not need to do the same style of restart processing 
as a database manager like DB2 or IMS. It does not need to do forward or backward recovery 
from logs or release retained locks. However, it does need to connect to any other transaction 
managers that were involved in any distributed transactions in order to inform them of the 
correct outcome of a transaction.

Prior to WebSphere Application Server V5.1, WebSphere Application Server had no logging 
system of its own. It used RRS to hold information on all transactions and on startup, it would 
retrieve this information from RRS. WebSphere Application Server V5.1 introduced an XA 
partner log, which holds information about XA resources accessed. The XA partner log can 
be an HFS file or a z/OS logger logstream. WebSphere Application Server V5.1 now uses 
both RRS and its XA partner log when resolving outstanding URs on restart.

As discussed in Chapter 7, “RRS restart and recovery” on page 61, when a resource 
manager restarts it goes through a restart process with RRS where it retrieves any 
outstanding URs that exist for it and then goes through recovery processing for each one.

On WebSphere Application Server startup, you see the messages reported in Example 8-2 
indicating RRS restart processing.

Example 8-2   RRS restart messages

BBOT0012I SERVER PBOS001 IS WARM STARTING WITH RRS                
BBOT0008I TRANSACTION SERVICE RESTART INITIATED ON SERVER PBOS001 
BBOT0009I TRANSACTION SERVICE RESTART UR STATUS COUNTS FOR SERVER 
PBOS001: IN-BACKOUT=0, IN-DOUBT=0, IN-COMMIT=0 

In this example there were no outstanding units of recovery.

In a restart situation, WebSphere Application Server tries to resolve any outstanding 
URs—but it may not be possible for it to do so if it needs to communicate with another 
transaction manager. There may be communication links down or the other transaction 
manager may not be available. 

In this case, RRS has outstanding URs in which WebSphere Application Server has 
expressed an interest. As discussed in 8.5.3, “Peer restart and recovery” on page 84, this can 

 

 

 

Chapter 8. WebSphere Application Server for z/OS 83



 

result in RRS refusing to allow WebSphere Application Server restart on any other system in 
the sysplex because RRS does not mark the WebSphere Application Server instance as 
“restart anywhere” until there are no outstanding URs for that instance. 

On WebSphere Application Server startup, you get the message shown in Example 8-3 if 
WebSphere Application Server cannot resolve in-doubt URs.

Example 8-3   Sample message for in-doubt UR

BBOT0015D OTS UNABLE TO RESOLVE ALL INCOMPLETE TRANSACTIONS FOR SERVER PBOS001. REPLY 
CONTINUE OR TERMINATE

If you reply CONTINUE, then RRS marks the WebSphere Application Server server as having to 
restart on this system. It may be necessary to manually resolve in-doubt URs to get around 
this issue.

With the introduction of the XA partner log in WebSphere Application Server v5.1, there is a 
new issue in that the XA partner log and the RRS logs must be in sync in order to coordinate 
restart processing for XA-compliant RMs. If either log has been recovered to a different point 
in time to the other, then there may be a mismatch. In this case you will get the message 
shown in Example 8-4.

Example 8-4   Log data mismatch sample message

BBOT0025D OTS HAS ENCOUNTERED A LOG DATA MISMATCH. REPLY CONTINUE IF THIS IS EXPECTED OR 
TERMINATE IF THIS IS UNEXPECTED

Reply TERMINATE, to ensure data integrity. Then investigate why the XA partner log and the 
RRS logs are out of sync.

8.5.3  Peer restart and recovery
If a failure occurs, Automatic Restart Manager (ARM) can restart WebSphere Application 
Server for z/OS and related server instances on the same system or on an alternate system 
in the sysplex. The latter condition is achieved through peer restart and recovery, which 
restarts the control region on another system and goes through the transaction restart and 
recovery process so that it can assign outcomes to transactions that were in progress at the 
time of failure. Resource managers (such as DB2) that were being accessed at the time of 
failure may hold locks that are scoped to a transaction UR (unit of recovery). Once an 
outcome has been assigned to a UR, the resource managers can, generally, drop those 
locks.

System requirement for restart and recovery
Make sure every system (your original system, as well as any systems intended for recovery) 
have the following installed:

� z/OS Version 1.2 or higher 
� BCP APAR OA01584 
� RRS APARs OA02556 and OA2556 
� WebSphere Application Server for z/OS Version 5 or higher 

Important: In z/OS 1.6, RRS permits a resource manager to restart on another system 
even if there are outstanding URs.

 

 

 

84 Systems Programmer’s Guide to RRS



 

The following products all support RRS. Individually, they also support peer restart and 
recovery, if the prerequisites are all properly installed: 

� DB2 Version 7 or higher 
� IMS Version 8 or higher 
� CICS Version 1.3 or higher 
� MQSeries Version 5.2 or higher 

Note: If you do not plan to use peer restart, you do not need to abide by these functional 
prerequisites. Your system continues to use the restart in place function that already exists.

Ensure that the location service daemon and node agent are already running on all systems 
that might be used for recovery. Otherwise, the recovering system might attempt to recover on 
a system that is not running the location service daemon and node agent. If this happens, the 
server will fail to start, and recovery will fail.

Check the service level of the application servers you are using for peer restart and recovery. 
Even though it is possible to perform peer restart and recovery across different service levels, 
minor differences in configuration data can prevent an application server from starting if the 
service level of the peer system is lower than the service level of the failed system. 

When the post installer detects a service level difference, it sends a message to the operator 
asking if recovery should continue. You can set up your automation to provide a positive 
response to this message and allow recovery to continue under these conditions. However, if 
startup is attempted and fails, the transactions needing to be recovered are now associated 
with the peer system, and RRS must be stopped on that system before these transactions 
can be moved back to the failed system. 

Therefore, we recommend that you modify your ARM policy to turn off peer restart and 
recovery while you are adding WebSphere Application Server service on your sysplex, to 
ensure that the systems performing peer restart and recovery are at the same service level as 
the failed system. 

InFlight work and presumed abort mode
If you have a distributed transaction that spans several servers, transactional locks may be 
held by resource managers involved in that work. When a failure occurs before that 
distributed transaction has started to commit, WebSphere Application Server for z/OS and the 
resource managers go into presumed abort mode. In this mode, the resource managers abort 
(rollback) the transaction. 

� The effect of a server failure or communications failure will vary, depending on which 
server is executing the work at the time of failure. 

� An OTS timeout may be required to roll back the subordinate branches of the distributed 
transaction tree. 

This can occur when you have a server B Web client that is driving a session bean in the 
same server. That session bean has executed work against entity beans in servers C and D. 
All of the servers are involved in the same distributed, global transaction. 

Suddenly, server B fails while the session bean is InFlight (meaning it had not yet started to 
commit). Servers C and D are waiting for more work or the start of the two-phase commit 

Important: When setting up the ARM policy for a sysplex, make sure that both systems 
have the same level of application server installed. For example, you cannot use a V5.0 
application server to perform peer restart and recovery for a V5.1 application server.

 

 

 

Chapter 8. WebSphere Application Server for z/OS 85



 

protocol, but while in this state, the transactional locks may still be held by the resource 
managers. So, the server roles are as follows: 

� Server A: Servlet/JSP executed 
� Server B: Session bean accessed 
� Server C: Entity bean accessed 
� Server D: Entity bean accessed 

Once the timeout occurs, since we were InFlight at the time of the failure, we will roll back the 
transaction branch. 

When local resource managers are involved, RRS will ensure that they are called to perform 
presumed abort processing. When doing recovery, RRS will work with the resource managers 
to ensure that the recovery is done properly. When a failure occurs while work is InFlight, 
RRS will direct the resource managers involved in the local UR to roll back.

The WebSphere Application Server for z/OS runtime always assumes that there is recovery 
to do. Every time a server comes up, it does something different, depending on what mode it 
is in: 

� If the server is running in restart/recovery mode, it checks to see whether there is any 
recovery required. If so, it attempts to complete the recovery and either succeeds or 
terminates. 

� If the server is running normally, the restart/recovery transaction does not have to 
complete before it takes on new work. Once it knows what the restart work is, it can begin 
to take in new work. 

Handling new work during recovery
The procedures for the recovery of InFlight and InDoubt work have been described in some 
detail, but how is new work handled on a recovered server? Once the InDoubt and InFlight 
work has been completed, the WebSphere Application Server for z/OS server shuts down. A 
new application server configured for that system may now be started up to accept new work.

Special considerations must be taken to begin new work on a WebSphere Application Server 
for z/OS using IMS Connect after recovering to an alternate system. After the recovery 
completes, IMS Connect starts, but it is not usable without some manual intervention. 

On the current IMS Connect WTOR, execute the commands nn,viewhws followed by 
nn,opends XXX where XXX is the IMS subsystem name displayed in the result of the 
nn,viewhws query. The IMS datastore needs to reflect ACTIVE status, as seen in Example 8-5.

Example 8-5   Datastore sample WTOR 

*17 HWSC0000I *IMS CONNECT READY*  IMSCONN     
  R 17,VIEWHWS                                  
  IEE600I REPLY TO 17 IS;VIEWHWS                
  HWSC0001I   HWS ID=IMSCONN     Racf=N         
  HWSC0001I      Maxsoc=100  Timeout=12000      
  HWSC0001I    Datastore=IMS      Status=ACTIVE 
  HWSC0001I      Group=IMSGROUP Member=IMSCONN  
  HWSC0001I      Target Member=IMSA             
  HWSC0001I    Port=9999     Status=ACTIVE      
  HWSC0001I      No active Clients              
  HWSC0001I    Port=LOCAL    Status=ACTIVE      
  HWSC0001I      No active Clients    

At this point, IMS Connect will be ready for new work to be completed on the server.

 

 

 

86 Systems Programmer’s Guide to RRS



 

When peer restart and recovery do not work
The major reason for recovery failure is if you experience a network outage while in the 
process of recovering. If the system cannot reach the superior or subordinate because the 
network is dead, communications cannot reestablish and the transaction cannot completely 
resolve.

When WebSphere for z/OS cannot automatically resolve all of the URs returned from RRS at 
restart, RRS will not allow WebSphere to move back to the home (original) system. If 
WebSphere tries to go back while URs are still incomplete, you will receive an error code 
(C9C2186A) and a message describing an F02 return code from ATRIBRS. 

To get around this, manual resolution is required to mark the server for “restart anywhere.” 
RRS will do that after all of the URs in which WebSphere is involved are “forgotten.” If RRS 
fails to mark the server as “restart anywhere,” the server, upon failure, is required to start on 
the recovery system. This is undesirable because it does not allow you to move the server 
back to its true home system.

The ultimate goal is to resolve all transactions that WebSphere (the server instance-owned 
interests that could not complete recovery) is involved in, and then if necessary, remove all 
WebSphere interests that remain in those URs. After that is complete, browsing the RM data 
log will show if the resource manager is marked “restart anywhere.” Your goal is to see the 
following messages displayed:

RESOURCE MANAGER=BSS00.SY1.BBOASR4A.IBM
RESOURCE MANAGER MAY RESTART ON ANY SYSTEM

You will not want to receive the following messages:

RESOURCE MANAGER=BSS00.SY2.BBOASR4A.IBM
RESOURCE MANAGER MUST RESTART ON SYSTEM SY2

Note that if a server region is currently running, then RRS will mark the Resource Manager as 
having to restart on the current system. This is because RRS cannot make the decision to 
mark the resource Manage as “restart anywhere” until after the resource manager has ended 
and RRS can determine of there are any outstanding UR interests for that resource manager.

8.6  Example scenarios
In this section, we describe scenarios we ran to test RRS. For our test setup we used EJBs 
that were developed for the IBM Redbook Websphere for z/OS V5 Connector Handbook, 
SG24-7064.

In these scenarios, the EJB updates both CICS and IMS resources within one transaction 
and we deployed the EJB in two different modes, as follows:

� The first mode used the RRS connector for both the IMS and the CICS connector. 

� The second mode used the XA connector for IMS and the RRS connector for CICS. 

Both modes permit Global tran support for the transaction. In both instances the IMS 
connector and IMS system were running on the same system as WebSphere Application 
Server, but in the second mode we could have run the IMS connector and IMS system on a 
remote system.

 

 

 

Chapter 8. WebSphere Application Server for z/OS 87



 

8.6.1  Application updating CICS and IMS using RRS connectors
For this test we configured the CICS and IMS resource adapters to use RRSTransactional 
support. The WebSphere Application Server application updated both CICS and IMS within 
the scope of one transaction.

Example 8-6 is an extract from the RRS Archive log showing entries related to a successful 
transaction.

Example 8-6   RRS Archive extract 

SC48     2003/12/02 10:49:06.050724 BLOCKID=00000000412FACD1
  URID=BA6919507E8F0000000001F1010F0000 JOBNAME=WSA11S   USERID=ASSR1
  PARENT URID=00000000000000000000000000000000
  SURID=N/A
  WORK MANAGER NAME=BBO.CLHA1.CLUA11.WSA11.IBM
  SYNCPOINT=Commit  RETURN CODE=00000000
  START=2003/12/02 15:49:06.038266 COMPLETE=2003/12/02 15:49:06.050490
  EXITFLAGS=00840000
  LUWID=USIBMSC.SCSCERW1 691951BA88FB 0001  TID=             GTID=

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)
  GTRID=
BA691950551DB8230000003600000009BA1DDA49113244A40000018000000003090C060B
  BQUAL=
BA691950551DB8230000003600000009BA1DDA49113244A40000018000000003090C060B00000001
RMNAME=IMS.IM4B____V081.STL.SANJOSE.IBM ROLE=Participant
    FLAGS=10021000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000000
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=00000000
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled
  RMNAME=DFHRXDM.SCSCERW1.IBM             ROLE=Participant
    FLAGS=10001000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000010
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=00000010
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled

Example 8-7 shows that WebSphere Application Server, which is the work manager from an 
RRS point of view, has issued a commit. RRS is the syncpoint manager and there are two 
resource managers: IMS.IM4B____V081.STL.SANJOSE.IBM (our IMS system) and 
DFHRXDM.SCSCERW1.IBM (our CICS system). WebSphere Application Server, in this 
case, does not take an SDSRM role because in our transaction there are only 
RRSTransactional RMs involved.

 

 

 

88 Systems Programmer’s Guide to RRS



 

For each resource manager we see that the Prepare, Commit and ExitFailed exits are driven 
by RRS. The CICS commit exit returns x’10’ which signifies ATRX_FORGET. This means 
CICS has completed commit processing and requests RRS to delete its interest in this UR.

8.6.2  Application updating CICS and IMS with RRS and XA connectors
For the next test we configured the IMS resource adapter to use XA support by defining the 
IMS connection as remote. The CICS resource adapter remained as RRSTransactional. The 
WebSphere Application Server application updated both CICS and IMS within the scope of 
one transaction.

Example 8-7 is an extract from the RRS Archive log showing entries related to a successful 
transaction.

Example 8-7   RRS Archive log extract

SC48     2003/12/03 07:55:30.657321 BLOCKID=0000000041308871
  URID=BA6A34607E8F03740000009C010F0000 JOBNAME=IM4BCONN USERID=STC
  PARENT URID=00000000000000000000000000000000
  SURID=N/A
  WORK MANAGER NAME=HWS.IM4BCONNV021.SVL.SANJOSE.IBM
  SYNCPOINT=AtraCmt RETURN CODE=00000000
  START=2003/12/03 12:55:30.610100 COMPLETE=2003/12/03 12:55:30.657105
  EXITFLAGS=00800000
  LUWID=                                    TID=             GTID=

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)
  GTRID=
BA6A346025B116230000003700000006BA1DDA49113244A40000018000000003090C060B
  BQUAL=
BA6A346025B116230000003700000006BA1DDA49113244A40000018000000003090C060B00000001
000002D800000008000000040001
  RMNAME=HWS.IM4BCONNV021.SVL.SANJOSE.IBM ROLE=SDSRM
    FLAGS=10000000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000000
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=Uncalled
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled
  RMNAME=IMS.IM4B____V081.STL.SANJOSE.IBM ROLE=Participant
    FLAGS=10020000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000000
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=00000000
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled

SC48     2003/12/03 07:55:30.671862 BLOCKID=0000000041308AC3
  URID=BA6A34607E8F000000000200010F0000 JOBNAME=WSA11    USERID=ASCR1
  PARENT URID=00000000000000000000000000000000
  SURID=N/A

 

 

 

Chapter 8. WebSphere Application Server for z/OS 89



 

  WORK MANAGER NAME=BBO.CLHA1.CLUA11.WSA11.IBM
  SYNCPOINT=AtraPrp RETURN CODE=00000000
  START=2003/12/03 12:55:30.636966 COMPLETE=2003/12/03 12:55:30.671676
  EXITFLAGS=00840000
  LUWID=USIBMSC.SCSCERW1 6A34624CE683 0001  TID=             GTID=

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)
  GTRID=
BA6A346025B116230000003700000006BA1DDA49113244A40000018000000003090C060B
  BQUAL=
BA6A346025B116230000003700000006BA1DDA49113244A40000018000000003090C060B00000001
  RMNAME=DFHRXDM.SCSCERW1.IBM             ROLE=Participant
    FLAGS=10001000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000010
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=00000010
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled
  RMNAME=BBO.CLHA1.CLUA11.WSA11.IBM       ROLE=SDSRM
    FLAGS=10041000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000000
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=00000000
    ExitFailed EXIT RC=00000000
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled

In this case we have both an RRSTransactional resource manager and an XA resource 
manager involved. WebSphere Application Server provides the overall transaction 
management and will use RRS protocols to manage the RRSTransactional RM and XA 
protocols to manage the XA resource manager. To make things even more interesting, in this 
scenario the XA resource manager (IMS Connect) is using RRS for its connection.

At first glance it looks like there are two URs being independently controlled. There are two 
different RRS URIDs. The work manager for the first UR is IMS connect 
(HWS.IM4BCONNV021.SVL.SANJOSE.IBM). The work manager for the second UR is 
WebSphere Application Server (BBO.CLHA1.CLUA11.WSA11.IBM). Both IMS connect and 
WebSphere Application Server take an RRS SDSRM role for their respective URs. 

What is not so obvious from this RRS archive log is that WebSphere Application Server is 
communicating with IMS connect using XA protocols to ensure two-phase commit processing 
for the whole transaction. An X/Open identifier (XID) acts as the identifier for a distributed unit 
of work. An XID consists of a Global transaction Identifier (GTRID) and a Branch qualifier 
(BQUAL). RRS supports XIDs and WebSphere Application Server uses the XID to link the 
two URs. If you check the GTRID and BQUAL for both URs, you will see they are the same.

From an RRS point of view, the two URs are not related; WebSphere Application Server does 
not use RRS cascaded UR support. If you look in the RRS panels while this transaction is 
in-flight, you will see two independent URs being managed by two different work 
managers—each of which has a role of SDSRM. 

 

 

 

90 Systems Programmer’s Guide to RRS



 

WebSphere Application Server will use XA protocols to send prepare to IMS connect and 
issues an Prepare Agent UR to RRS for the CICS UR. Once IMS connect votes OK then 
WebSphere Application Server tell IMS connect to commit. We see IMS Connect issue an 
Commit Agent UR to commit the IMS updates and WebSphere Application Server will give 
the go-ahead to RRS to commit the CICS UR.

8.6.3  Application backout updating CICS and IMS with RRS and XA 
connectors

For this test we configured the IMS resource adapter to use XA support by defining the IMS 
connection as remote. The CICS resource adapter remained as RRSTransactional. The 
WebSphere Application Server application updated both CICS and IMS within the scope of 
one transaction. We cancelled the CICS system in the middle of the transaction before a 
commit WebSphere Application Server issued. Example 8-8 shows an extract of this event 
from the Archive log.

Example 8-8   RRS Archive extract sample

SC48     2003/12/03 08:02:57.863262 BLOCKID=00000000413099D1
  URID=BA6A35F77E8F03740000009F010F0000 JOBNAME=IM4BCONN USERID=STC
  PARENT URID=00000000000000000000000000000000
  SURID=N/A
  WORK MANAGER NAME=HWS.IM4BCONNV021.SVL.SANJOSE.IBM
  SYNCPOINT=AtraBak RETURN CODE=00000000
  START=UNKNOWN                    COMPLETE=2003/12/03 13:02:57.862936
  EXITFLAGS=02000000
  LUWID=                                    TID=             GTID=

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)
  GTRID=
BA6A35F7CAE0C403000000370000000CBA1DDA49113244A40000018000000003090C060B
  BQUAL=
BA6A35F7CAE0C403000000370000000CBA1DDA49113244A40000018000000003090C060B00000001
000002D800000008000000040001
  RMNAME=HWS.IM4BCONNV021.SVL.SANJOSE.IBM ROLE=SDSRM
    FLAGS=10000000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=Uncalled
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=Uncalled
    Backout    EXIT RC=00000000
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=Uncalled
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled
  RMNAME=IMS.IM4B____V081.STL.SANJOSE.IBM ROLE=Participant
    FLAGS=10000000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=Uncalled
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=Uncalled
    Backout    EXIT RC=00000010
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=Uncalled
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled

SC48     2003/12/03 08:02:57.878463 BLOCKID=0000000041309C23

 

 

 

Chapter 8. WebSphere Application Server for z/OS 91



 

  URID=BA6A35F77E8F000000000206010F0000 JOBNAME=WSA11    USERID=ASCR1
  PARENT URID=00000000000000000000000000000000
  SURID=N/A
  WORK MANAGER NAME=BBO.CLHA1.CLUA11.WSA11.IBM
  SYNCPOINT=AtraBak RETURN CODE=00000000
  START=UNKNOWN                    COMPLETE=2003/12/03 13:02:57.878151
  EXITFLAGS=02040000
  LUWID=USIBMSC.SCSCERW1 6A35F9647264 0001  TID=             GTID=

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)
  GTRID=
BA6A35F7CAE0C403000000370000000CBA1DDA49113244A40000018000000003090C060B
  BQUAL=
BA6A35F7CAE0C403000000370000000CBA1DDA49113244A40000018000000003090C060B00000001
  RMNAME=DFHRXDM.SCSCERW1.IBM             ROLE=Participant
    FLAGS=06010000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=Uncalled
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=Uncalled
    Backout    EXIT RC=00000030
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=Uncalled
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled
  RMNAME=BBO.CLHA1.CLUA11.WSA11.IBM       ROLE=SDSRM
    FLAGS=10040000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=Uncalled
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=Uncalled
    Backout    EXIT RC=00000000
    EndUr      EXIT RC=00000000
    ExitFailed EXIT RC=00000000
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled

In this scenario we cancel our CICS system while the application is executing and while the 
RRS UR states are InFlight. WebSphere Application Server detects the resource adapter 
error and communicates with IMS connect using XA protocols to tell it to back out. 
WebSphere Application Server also calls RRS to back out the UR involving CICS.

As in 8.6.2, “Application updating CICS and IMS with RRS and XA connectors” on page 89 
using mixed RRSTransactional and XA resource managers, we see that the GTRID and 
BQUAL ties the two RRS URs together.

Because the CICS system has been cancelled, the return code from the CICS backout exit is 
x’30’ indicating ATRX_LATER. This means that CICS will provide a return code at a later time. 
When CICS restarts and begins restart processing with RRS, then it will provide RRS with the 
backout return code. 

 

 

 

92 Systems Programmer’s Guide to RRS



 

Chapter 9. DB2 for z/OS

In this chapter, we describe how D2 for z/OS V7 uses RRS. 

This chapter covers the following topics:

� DB2 for z/OS V7 RRS requirements

� DB2 features that exploit RRS

� RRS facilities that are exploited

� Restart and recovery issues

9
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 93



 

9.1  DB2 RRS requirements
DB2 for OS/390 is the IBM relational database manager for OS/390. DB2 supports access to 
the data it manages from many different sources—batch jobs, traditional transaction 
management environments such as CICS and IMS/TM, and also the new environments such 
as WebSphere Application Server and Internet-based applications. 

DB2 supports both single-phase and two-phase commit transactions. The type of commit that 
is supported for a given transaction is determined by the interface that is used to 
communicate with DB2. Similarly, the syncpoint manager that is used depends on the 
application and the environment. DB2 supports the traditional syncpoint managers CICS and 
IMS/TM, and will use these products as the syncpoint manager for transactions between 
these products and DB2. For DB2-to-DB2 communication using DDF, DB2 itself acts as the 
syncpoint manager. And since DB2 for OS/390 V5, it also supports the new RRS component 
of OS/390. 

The resource manager that is responsible for global commit coordination for a given 
transaction depends on the scope of the transaction, where the transaction originated, and 
the interfaces and products used. It is vital that you understand all the concepts involved 
before you read the following discussion about DB2 capabilities. Apart from the programs that 
use RRSAF, RRS will only be involved in a DB2 transaction if an external syncpoint manager 
is required—and that requirement generally only exists if there is more than one resource 
manager involved in a transaction and a part of the transaction executes outside the control of 
that resource manager. 

9.1.1  DB2 RRS Attach facility
The DB2 interface that uses RRS is called the Recoverable Resource Manager Services 
Attach Facility (RRSAF). As well as providing support for RRS, RRSAF is also the strategic 
call attachment for DB2—all new enhancements in this area will be in RRSAF. Two 
enhancements available only through RRSAF are the ability to have more than one 
connection between an address space and DB2, and the ability to sign on to DB2 using a new 
authorization ID and an existing plan and connection. RRSAF is described in detail in DB2 for 
OS/390 Application Programming and SQL Guide, SC26-8958.

The RRSAF interface can be used by programs that are written in Assembler, C, COBOL, 
Fortran, or PL/I. To commit or roll back work when using RRSAF, use the SRRCMIT or 
SRRBACK commands respectively. If the only recoverable resource being used by your 
application is within a single DB2 subsystem, then you can also use the DB2 COMMIT and 
ROLLBACK functions.

Note: You can not use RRSAF from within a CICS or IMS transaction.

To use RRSAF, you must link your application with the RRSAF language interface module, 
DSNRLI, and specify the appropriate parameters on the CALL DSNRLI statement. 
Alternately, you can use the ATTACH(RRSAF) option on the precompile. This is just another 
way of linking DSNRLI. If you use ATTACH(RRSAF), the code produced by the precompiler 
will call DSNRLI instead of the generic DSNHLI entry point, so you will be sure to pick up 
RRSAF code without having to worry about the linkage editor statements.

When using RRSAF, DB2 will register an interest in the transaction with RRS. The amount of 
overhead that is involved in using RRS depends on how many resource managers are 
involved and what type of commit command is invoked. 

 

 

 

94 Systems Programmer’s Guide to RRS



 

If an SQL COMMIT is issued, DB2 will check with RRS to see if any other resource managers 
are involved. If DB2 is the only resource manager involved in the transaction, DB2 will then 
coordinate the commit internally. There is no measurable overhead in this case. 

If an SRRCMIT is issued, RRS will check to see if DB2 is the only resource manager involved 
in the transaction. If it is, RRS will invoke the “only agent” exit and request DB2 to do a 
one-phase commit. The processing associated with the only agent exit is all within the RRS 
address space. There is more overhead involved in this option that if an SQL COMMIT was 
used.

Finally, if an SRRCMIT is issued, and DB2 is not the only resource manager, then full 
two-phase commit processing will be invoked and the overhead will be higher due to the 
additional PREPARE and COMMIT processing.

Generally, the recommendation is to use SLQ COMMIT if DB2 is the only resource manager 
you are using. However if your transaction also uses another resource manager, then you 
must change the SQL COMMIT to an SRRCMIT. If you do not change the SQL COMMIT, and 
DB2 determines that there is another resource manager involved in the transaction, the SQL 
call will fail with a -925/-926 SQL code.

There is no instrumentation in DB2 or DB2PM to tell you how many times RRS was called, or 
the amount of processing involved as a result of the involvement of RRS.

When using RRSAF, DB2 will register an interest in the transaction with RRS. The amount of 
overhead that is involved in using RRS depends on how many resource managers are 
involved and what type of commit command is invoked. 

RRSAF-capable interfaces to DB2 include:

� Batch/TSO
� WLM managed Stored Procedures (see “DB2 Stored Procedures”)
� JDBC
� SQLJ
� CLI/ODBC

9.1.2  DB2 Stored Procedures
If you use WLM-managed Stored Procedures address spaces, then RRS is a prerequisite. If 
you use the standard DB2-managed Stored Procedures address space (DSNSPAS), then 
RRS cannot be involved, and you cannot include other resource managers within a single unit 
of recovery. If you wish to use Stored Procedures that use RRS or involve other resource 
managers within the same UR, then you must use WLM-managed Stored Procedures.

If you have an existing Stored Procedure that you wish to start using RRS, all that must be 
done is to relink the program with DSNRLI and rebind the plan. RRS support is transparent to 
both the caller of the stored procedure and the stored procedure itself.

The stored procedure itself may not invoke any RRSAF functions directly, nor may it invoke 
SRRCMIT or SRRBACK.

DB2 stored procedures may update a number of resources including IMS or CICS resources 
as well as DB2. In this case, DB2 stored procedures may take an RRS DSRM role if it 
determines that it needs to be the syncpoint manager for a particular UR. See 3.1.1, “RRS 
distributed syncpoint support” on page 25 for a discussion on distributed syncpoint 
processing with RRS.

 

 

 

Chapter 9. DB2 for z/OS 95



 

9.1.3  DB2 JDBC/SQLJ driver for OS/390
The DB2 JDBC/SQLJ driver for OS/390 is a type 2 JDBC driver that uses DB2 RRSAF attach 
to allow a Java program connect to DB2 using JDBC or SQLJ. JDBC is an API that allows a 
Java program to access a database such as DB2. JDBC supports dynamic SQL only. 

SQLJ is an API developed by IBM, Oracle® and Tandem to permit Java programs access to a 
relational database using static SQL. SQLJ can interoperate with JDBC so a Java application 
program can use both JDBC and SQLJ within one unit of work.

This driver can be used by any Java program running on z/O,S and it is also supported by 
WebSphere for z/OS V4.01 and later.

This driver is a JDBC type 2 driver. The JDBC standard defines four different type of drivers:

Type 1 driver This driver provides a bridge to an ODBC driver; it is not commonly 
used any more.

Type 2 driver A JDBC driver that calls platform-specific and database-specific code 
to access the database, these drivers usually offer the best 
performance—but a specific driver is required for each platform and 
database combination. 

Type 3 driver This driver provides a bridge to a middleware product that connects to 
the database. It is usually written in Java and is portable across 
platforms.

Type 4 driver This driver connects directly to the database using the a standard 
protocol supported by the database server. For example, Type 4 
drivers for DB2 use the DRDA protocol to connect to a DB2 database 
server directly. Type 4 drivers are written entirely in Java and are thus 
much easier to port across platforms. 

This driver uses RRSAF to connect to DB2 and therefore can only connect to a local DB2.

9.1.4  DB2 Universal JDBC/SQLJ driver
The DB2 universal JDBC driver for z/OS is a new driver supplied with DB2 for z/OS V8. It is 
also available as a PTF for DB2 for z/OS V7. This driver can be configured as a type 2 or type 
4 driver. From an RRS perspective, we are really only interested in this driver when operating 
as a type 2 driver. 

When configured as a type 2 driver, it behaves like the older DB2 JDBS/SQLJ driver for 
OS/390. It uses RRSAF to connect to a local DB2 for z/OS. WebSphere for z/OS V5.02 
supports the new DB2 driver. DB2 stored procedures only support this driver when configured 
in JDBC type 2 mode.

When configured as a type 4 driver, it can operate in two modes: non-XA or XA. The X/Open 
XA protocol defines how a transaction manager communicates with resource managers with 
two-phase commit support. In the J2EE platform, the XA protocol is implemented by the JTA 
XAResource interface. WebSphere for z/OS V5 supports this driver in both XA and non-XA 
modes of operation. DB2 stored procedures do not support this driver in JDBC type 4 mode.

If configured as a non-XA JDBC type 4 driver then there is no two-phase commit support 
provided. The DB2 subsystem can be local or remote because the DRDA protocol is used to 
connect to it.

 

 

 

96 Systems Programmer’s Guide to RRS



 

If configured as an XA JDBC type 4 driver, then there is two-phase commit support provided 
to both local and remote DB2s. RRS is not used for two-phase commit support when 
configured as a type 4 driver.

In an environment where both WebSphere Application Server and the DB2 subsystem reside 
on the same z/OS image, it is preferable to configure the driver as JDBC type 2 for 
performance reasons. RRSAF attach will always perform better then DRDA.

9.2  DB2 restart and recovery with RRS
On restart DB2, like any other DBMS, performs extensive restart and recovery processing. 
The DB2 for z/OS Administration Guide discusses DB2 restart and recovery processing in 
detail. Here, we concentrate on how DB2 interacts with RRS on restart and recovery, and we 
look at scenarios that may force manual intervention to resolve in-doubt URs with RRS.

The normal restart and recovery phases that DB2 goes through are: 

� Phase 1: Log initialization

DB2 identifies the last LOG RBA used before termination so that it can start logging at the 
next RBA.

� Phase 2: Current status rebuild. 

DB2 determines what URs are outstanding and the status of each UR (in-flight, in-commit, 
in-abort or in-doubt). DB2 also recovers information about coordinator and participants for 
all outstanding URs.

� Phase 3: Forward Log Recovery 

Having determined the outstanding URs in Phase 2, DB2 makes all the database changes 
for committed work as well as for in-flight, in-doubt and in-abort URs. For in-flight, in-doubt 
and in-abort URs, DB2 locks the changed data to make it unavailable.

� Phase 4: Backward Log Recovery 

� In this phase, DB2 reverses out changes by in-flight or in-abort URs and releases locks for 
those URs.

During Phase 2 of DB2 restart processing, DB2 retrieves any outstanding URs from RRS. 
DB2 calls the Begin_retstart_processing (ATRIBRS) RRS service to begin restart processing 
with RRS. RRS returns a list of URs in which DB2 has expressed an interest. DB2 then 
retrieves information for each outstanding UR using the Retrieve_interest_data (ATRRID) 
RRS call.

9.2.1  DB2 restart if RRS is unavailable
If DB2 restarts and RRS is not available, then it cannot resolve any URs that were in-doubt 
where RRS was the syncpoint manager and DB2 was a participant. For any URs in which 
DB2 was coordinator (DB2 WLM-managed stored procedures, for example) or in which the 
state was in-flight, in-commit or in-abort, DB2 does not need to retrieve UR data from RRS. It 
can process those UR by backing out any in-flight or in-abort URs.

Any in-doubt URs may result in retained locks for affected data. If there are in-doubt URs, 
DB2 will issue messages DSN3010I or DSN3011I to indicate that RRS cannot be contacted 
to resolve these in-doubt URs.

DB2 will resync with RRS once RRS is restarted on the z/OS image. At that stage it can 
resolve any in-doubt URs according to the final state that RRS supplies.

 

 

 

Chapter 9. DB2 for z/OS 97



 

Note that when DB2 starts and RRS is unavailable, any DB2 facilities that require RRS will 
also be unavailable. That means any attempt to use RRSAF or WLM managed stored 
procedures will result in an error. For example, an attempt to start a WLM stored procedure 
results in the error message shown in Example 9-1.

Example 9-1   WLM stored procedure sample startup messages

DSNX982I DSNX9WLM ATTEMPT TO PERFORM RRS ATTACH FUNCTION SPAS_ID
  FAILED WITH RRS RC = 00000008 RSN = 00F30091 SSN = D7V1
  PROC= D7V1SPAS ASID = 4F WLM_ENV =WLMENV

Support is provided with APAR UQ85390 for DB2 or z/OS V7.1 to display a message once 
DB2 RRS restart processing is complete; the message is shown in Example 9-2: 

Example 9-2   RRS attachment messages sample

DSN3029I csect-name RRS ATTACH PROCESSING IS AVAILABLE

9.2.2  DB2 restart on another system
As discussed in Chapter 4, “Implementing RRS” on page 31, prior to z/OS V1.6, RRS will 
mark a resource manager as having to restart on the same system if there are outstanding 
URs for that resource manager when it terminated and RRS has remained operational on that 
system. 

If DB2 terminates and there are outstanding URs, then RRS will reject any attempt by DB2 to 
restart on another system in the same RRS logging group. DB2 will receive an return code of 
F02 from the Begin_retstart_processing (ATRIBRS) RRS call indicating that DB2 cannot 
register with RRS on this system. If there are in-doubt URs, then DB2 will issue messages 
DSN3010I or DSN3011I to indicate that RRS cannot be contacted to resolve these in-doubt 
URs because DB2 is being restarted on the wrong system.

This has the same effect as if RRS is unavailable; in-doubt URs cannot be resolved and 
RRSAF and WLM stored procedures will be unavailable. The difference in this scenario is that 
in order to allow DB2 to connect to RRS, DB2 must be stopped and either restarted on the 
z/OS system it was originally running on, or you must manually remove any outstanding URs 
in which DB2 has an interest. Then DB2 can be restarted on the new system. 

Note that this issue only occurs on releases of z/OS prior to V1.6 and only when RRS has 
stayed operational on the original system. It is assumed that if DB2 terminates and the z/OS 
system remains operational, DB2 will be restarted on the same system.

9.3  Sample scenarios for DB2 using RRS
Our test scenario consisted of an MVS batch program written in C that updates both DB2 and 
MQ in one unit of work. The program uses RRSAF to attach to DB2 and uses the MQ RRS 
attach support to connect to MQSeries. The program uses the RRS SRRCMIT and 
SRRBACK calls to perform commit and backout processing.

9.3.1  Normal commit processing scenario
In this scenario, we see RRS panel displays and RRS log extracts showing what happens 
during a normal run of the batch job where we update both DB2 and MQ and then commit the 
updates. The C program we are running waits for a period after updating DB2 and MQ but 
before issuing a SRRCMIT. This gives us time to display panels and so on.

 

 

 

98 Systems Programmer’s Guide to RRS



 

Before we start the batch job we look at the status of the DB2 (subsystem D7V1) and MQ 
(subsystem MQV1) resource managers by looking at the RRS ISPF resource manager list 
panel; see Example 9-3.

Example 9-3   RRS resource manager list panel

RRS Resource Manager List          Row 3 to 13 
Command ===>                                                 Scroll ===> 
                                                                         
Commands: v-View Details u-View URs r-Remove Interest                    
                                                                         
S   RM Name                          State             System   Logging G
    CSQ.RRSATF.IBM.MQV1              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.DB7A              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.DB7J              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.DB7L              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.D7V1              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.DB7A              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.DB7J              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.DB7L              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.D7V1              Run               SC53     WTSCPLX1 
    IMS.IMSC____V081.STL.SANJOSE.IBM Reset             SC53     WTSCPLX1 
    IMS.IMSG____V091.STL.SANJOSE.IBM Reset             SC53     WTSCPLX1

This panel shows the two resource managers that we are interested in; 
DSN.RRSATF.IBM.D7V1 is the DB2 RRSAF resource manager, and 
CSQ.RRSATF.IBM.MQV1 is the MQseries RRS attach resource manager. Both RMs have an 
RRS state of Run, meaning they are registered to RRS on this system (SC53) and have 
completed RRS restart processing.

We now start our batch job and display the RRS UR details using the RRS ISPF panels; see 
Example 9-4.

Example 9-4   RRS UR details view

                          RRS Unit of Recovery List            Row 1 to 1 of 1
RRS Unit of Recovery Details          Row 1 to 2 
Command ===>                                                 Scroll ===> P
                                                                          
Commands r-Remove Interest v-View URI Details                             
                                                                          
UR identifier : BB67A49B7E5CEDD00000001001010000                          
Create time : 2004/06/22 02:44:42.478089      Comments :                  
UR state : InFlight      UR type : Prot                                   
System : SC53      Logging Group : WTSCPLX1                               
SURID : N/A                                                               
Work Manager Name : SC53.MURPHYAR.0026                                    
   Display Work IDs              Display IDs formatted                    
   Luwid  . : Not Present                                                 
   Eid  . . : Not Present                                                 
   Xid  . . : Not Present                                                 
Expressions of Interest:                                                  
S   RM Name                           Type  Role                          
    CSQ.RRSATF.IBM.MQV1               Prot  Participant                   
    DSN.RRSATF.IBM.D7V1               Prot  Participant

 

 

 

Chapter 9. DB2 for z/OS 99



 

In this panel we see the details on the UR. Both RMs have an RRS role of Participant. This 
means that RRS acts as syncpoint coordinator.

We can relate the RRS UR to a DB2 thread by issuing the DB2 command DISPLAY 
THREAD(*) RRSURID(*); see Example 9-5.

Example 9-5   Display Thread Command sample output

-D7V1 DIS THREAD(*) RRSURID(*)                                         
DSNV401I  -D7V1 DISPLAY THREAD REPORT FOLLOWS -                        
DSNV402I  -D7V1 ACTIVE THREADS - 447                                   
NAME     ST A   REQ ID           AUTHID   PLAN     ASID TOKEN          
RRSAF    T       13              MURPHYA  RRSM06   0026  1186          
 V480-DB2 IS PARTICIPANT FOR RRS URID=BB67A49B7E5CEDD00000001001010000 
DISPLAY ACTIVE REPORT COMPLETE                                         
DSN9022I  -D7V1 DSNVDT '-DIS THREAD' NORMAL COMPLETION

When the RRSURID keyword is used on the DISPLAY THREAD command, DB2 adds 
RRS-related information in message DSNV480I if DB2 is a participant. Note that the full 
message id is not displayed but the output is prefixed with V480. In Example 9-5, we see that 
DB2 is a participant as we would expect, given the previous RRS panel display.

DB2 issues the RRS information using message DSNV481I if DB2 is the coordinator for this 
UR.

When the batch program finally commits the updates, the UR goes to a state of forgotten and 
we can look in the RRS Archive log to see a record of the commit; see Example 9-6.

Example 9-6   RRS Archive log sample

RRS/MVS LOG STREAM BROWSE DETAIL  REPORT                               
                                                                       
READING ATR.WTSCPLX1.ARCHIVE       LOG STREAM                          
                                                                       
SC53     2004/06/21 22:46:42.504857 BLOCKID=0000000079876D89           
  URID=BB67A49B7E5CEDD00000001001010000 JOBNAME=MURPHYAR USERID=MURPHYA
  PARENT URID=00000000000000000000000000000000                         
  SURID=N/A                                                            
  WORK MANAGER NAME=SC53.MURPHYAR.0026                                 
  SYNCPOINT=Commit  RETURN CODE=00000000                               
  START=2004/06/22 02:46:42.484323 COMPLETE=2004/06/22 02:46:42.504683 
  EXITFLAGS=00800000                                                   
  LUWID=                                    TID=             GTID=     
                                                                       
  FORMATID=             (decimal)          (hexadecimal)               
  GTRID=                                                               
                                                                       
  BQUAL=                                                               
                                                                       
  RMNAME=CSQ.RRSATF.IBM.MQV1              ROLE=Participant             
    FLAGS=10001000 PROTOCOL=PresumeAbort                               
    StateCheck EXIT RC=Uncalled                                        
    Prepare    EXIT RC=00000000                                        
    DistSp     EXIT RC=Uncalled                                        
    Commit     EXIT RC=00000010                            
    Backout    EXIT RC=Uncalled                            
    EndUr      EXIT RC=Uncalled                            
    ExitFailed EXIT RC=Uncalled                            
    Completion EXIT RC=Uncalled                            
    OnlyAgent  EXIT RC=Uncalled                            

 

 

 

100 Systems Programmer’s Guide to RRS



 

  RMNAME=DSN.RRSATF.IBM.D7V1              ROLE=Participant 
    FLAGS=10001000 PROTOCOL=PresumeAbort                   
    StateCheck EXIT RC=Uncalled                            
    Prepare    EXIT RC=00000000                            
    DistSp     EXIT RC=Uncalled                            
    Commit     EXIT RC=00000010                            
    Backout    EXIT RC=Uncalled                            
    EndUr      EXIT RC=Uncalled                            
    ExitFailed EXIT RC=Uncalled                            
    Completion EXIT RC=Uncalled                            
    OnlyAgent  EXIT RC=Uncalled

Here we see that the UR has been successfully committed. RRS has called the Prepare and 
Commit exits for both MQ and DB2. The return code of x’10’ from the Commit exit signifies 
ATRX_FORGET, the commit was successful and the RM has set the UR state to forgotten.

 

 

 

Chapter 9. DB2 for z/OS 101



 

 

 

 

102 Systems Programmer’s Guide to RRS



 

Chapter 10. CICS Transaction Server

In this chapter, we discuss how CICS/TS V2.2 uses RRS. 

This chapter covers the following topics:

� CICS/TS V2.2 RRS requirements

� CICS/TS features that exploit RRS

� RRS facilities that are exploited

� Restart and recovery issues

10
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 103



 

10.1  CICS RRS requirements
CICS Transaction Server is an online transaction processing system where transactions are 
executed. The CICS TS execution environment can be structured as a single layer or it can be 
structure up to three layers, each specifically dedicated to manage a particular environment:

� The Terminal Owing Region (TOR) is dedicated to managing the interfaces with the 
network. The TOR is usually considered the front end for the incoming workload.

� The Application Owing Region (AOR) is where the application logic resides and where 
transactions are executed. 

� The File Owing Region (FOR) is where the I/O operations against VSAM files are 
executed. To retrieve DL1 or DB2 data, the application issues an external CALL to either 
IMS/DB or DB2 (there is no local DL1 support since CICS Transaction Server). 

CICS regions are interconnected through the use of Cross Memory services (MRO) within the 
same z/OS image, through the use of XCF services in a sysplex, or through the use of ISC 
communication over VTAM® (ISC) if they are located across multiple z/OS images.

As discussed in the following sections, CICS TS provides a two-phase commit protocol for its 
unit of work (UOW). What is new in this environment is the external CICS interface (EXCI), 
which has been enhanced in CICS TS 1.3 to provide resource recovery controlled within the 
client program. This new external CICS interface facility uses RRS as a two-phase commit 
coordinator.

10.1.1  Working in CICS
In this section we illustrate different ways of initiating a transaction within a CICS region, and 
of communicating with other resource managers outside that CICS region.

The term transaction has a specific meaning in a CICS environment: it involves all the 
processing executed for a specific type of request. A request type may represent a whole 
process (such as making an airline reservation), or a subcomponent of that process (such as 
assigning a seat on the aircraft). The application design determines the duration of the single 
transaction and provides this information to the CICS system by using explicit or implicit 
syncpoint. 

Transactions in CICS can be of different types: 

Conversational This involves more than one input from the terminal, so that 
transaction and user enter into a conversation

Non-conversational This has only one input. The transaction processes that input, 
responds to the terminal, and terminates.

Pseudo-conversational This contains a series of non-conversational transactions that look 
to the user like a single conversational transaction involving several 
interactions with the user. Each transaction in the sequence 
handles one input, sends back the response, and terminates. 

This application design is the most common, since 
pseudo-conversational transactions normally use less virtual 
storage and also hold exclusive resources for a shorter time than 
conversational mode. There are other reasons to choose the 
pseudo-conversational model, which are explained in detail in CICS 
Application Programming Guide, SC33-1687.

 

 

 

104 Systems Programmer’s Guide to RRS



 

One of the issues in transaction execution is the usage of resources in terms of contention, 
integrity and recoverability in case of a failure. The level of contention might be influenced by 
the type of transaction, while the integrity and recoverability of the recoverable/protected 
resource is ensured by CICS. 

CICS ensures that changes to the recoverable resources made by a unit of work (UOW) are 
either made completely, or not at all. A UOW is a sequence of actions that needs to be 
completed before any of the individual actions can be considered as complete. Usually a 
UOW is equivalent to a transaction—unless that transaction issues a CICS SYNCPOINT 
command, in which case the UOW lasts between syncpoints. From a CICS perspective, the 
UOW is the same as the unit of recovery. If a transaction that consists of multiple UOWs fails, 
committed UOWs are not backed out.

A synchronization point or syncpoint is a specific time, either explicitly or implicitly invoked by 
the transaction, where all the updates to protected resources must either be committed or 
backed out. CICS TS is capable of ensuring integrity and consistency of resources, both 
within a single CICS region and distributed over the interconnected systems in a network, by 
applying the two-phase commit processing at syncpoint time.

During syncpoint processing, CICS TS invokes each local resource manager that has 
updated recoverable/protected resources during the UOW. The local resource managers then 
perform the required action. This provides the means of coordinating the actions performed 
by individual resource managers.

If the execution of a UOW is distributed across more than one system, the CICS syncpoint 
managers (or their equivalents) in each connected system ensure that the effects of the 
distributed UOW are atomic. Each CICS issues the requests necessary to effect two-phase 
syncpoint processing to each of the connected systems with which a UOW may be in 
conversation.

In each connected system in a network, the CICS syncpoint manager uses interfaces to its 
local syncpoint manager connectors (RMCs) to communicate with the partner syncpoint 
manager. The RMCs are the communication resource managers (LU6.2, LU6.1, MRO and 
RMI) that have the function of understanding the transport protocols and controlling the flows 
between the connected systems during syncpoint.

As remote resources are accessed during UOW execution, the CICS syncpoint manager 
keeps track of the data describing the status of its end of the conversation with that RMC. The 
CICS syncpoint manager also assumes responsibility for the coordination of two-phase 
syncpoint processing for the RMC. See Figure 10-1 on page 106 for a diagram of the 
resource managers that CICS communicates with. 

 

 

 

Chapter 10. CICS Transaction Server 105



 

Figure 10-1   The resource managers that CICS communicates with

There is only one exception in providing a two-phase commit protocol, and it is in case of 
going out of CICS TS by using an LU6.2 protocol to an application environment other then 
CICS TS (for example, DB2 Stored Procedure or IMS/TM). In this case, in order to have an 
atomic syncpoint across the distributed UOW, it is necessary that the target application 
environment registers with RRS as an agent so that RRS can provide synchronization at 
commit time on the remote site as part of the two-phase commit protocol.

The following section briefly introduces all the existing possibilities for connecting to a CICS 
subsystem. It also introduces an enhancement to the External CICS interface (EXCI), called 
Transactional EXCI, in which the syncpoint coordination has been extended outside of CICS 
to fully support a distributed transaction environment.

10.1.2  Connecting to CICS via EXCI
Here we briefly describe the external interfaces that can be used to start transactions or to 
execute programs in a CICS environment. Consideration and details are provided only for the 
EXCI interface, in which starting from CICS TS 1.3, support is provided to fully implement a 
distributed transaction model by using RRS as an external syncpoint manager. In such a 
configuration, the syncpoint is initiated outside of the CICS TS environment and CICS acts as 
a syncpoint agent.

For more detailed information, refer to CICS Recovery and Restart Guide, SC33-1698, CICS 
Application Programming Guide, SC33-1687, CICS Transaction Server for OS/390 External 
Interface Guide, SC33-1944, and CICS Intercommunication Guide, SC33-1695.

EXCI Interface
The External CICS interface (EXCI) is an application programming interface that enables a 
non-CICS program (a client program) that is running in a z/OS address space to call a 
program (a server program) running in a CICS region, and to pass and receive data by means 
of a communication area. The CICS application program is invoked as if linked to by another 

R D O

T S
T D

F C

F C / R L S

L U 6 . 2

L U 6 . 1

M R O M Q M

D B C T L

D B 2

C I C S  T SC I C S  T S
R e c o v e r yR e c o v e r y
M a n a g e rM a n a g e r

L o c a l  r e s o u r c e  
m a n a g e r s

R M I  f o r  r e m o t e  
r e s o u r c e s

C o m m u n i c a t i o n  
m a n a g e r s

 

 

 

106 Systems Programmer’s Guide to RRS



 

CICS application program. The programming interface allows a user to allocate and open 
sessions to a CICS region and to pass DPL requests over them. 

Before CICS TS 1.3, one of the limitations of EXCI was that syncpoint processing had to be 
performed upon completion of the CICS program by using the SYNCONRETURN option on 
the DPL request. Therefore, any CICS resources that were updated were either committed or 
rolled back when the EXCI client program regained control. Non-CICS resources were not 
part of the CICS UOW, and updates were not committed upon completion of each DPL 
request.

CICS TS1.3 enhances the EXCI interface. In addition to the existing support, you are now 
able to extend a single CICS UOW to span multiple DPL requests to the same CICS region or 
to several different CICS regions, as well as make calls to other resource managers such as 
DB2, WebSphere MQ and IMS.

Figure 10-2 shows a diagram of the extended capability of the EXCI with the participation of 
non-CICS resource managers in the same UOW. 

Figure 10-2   EXCI flow

In CICS TS 1.3 environment, a CICS server program that is invoked by an external CICS 
interface request can update recoverable resources. The client program can determine when 
syncpointing should occur. There are two options:

� Resource recovery controlled by CICS server region. 

In this case, changes to recoverable resources are committed at the completion of each 
DPL request, independently of the client program. Also, in addition to the syncpoint taken 
when the server program returns control to CICS (with the SYNCONRETURN option), the 
server program can take explicit syncpoints during execution.

� Resource recovery controlled by the EXCI client program with the support of recoverable 
resource management services (RRS). 

mirror transaction

server
application

mirror transaction

server
application

client application

CICS TS regionDB2

EXEC CICS

LINK

DB2
request

EXEC CICS

LINK

CICS TS region

SRRCMIT

RRS

(database updates)

SYNCPOINT
request

SYNCPOINT
request

SYNCPOINT
request

z/OS batch job 

 

 

 

Chapter 10. CICS Transaction Server 107



 

When the client program requests it, updates made by the server program in a single or 
even in multiple successive DPL requests are committed together. 

To support this option, CICS and the EXCI interface both make use of RRS services. CICS 
acts as a resource manager, and the client program may issue requests to other resource 
managers and have resources owned by those resource managers committed in the same 
unit of recovery (UR), where UR represents all the resource managers that are going to be 
called at syncpoint time. 

These options are controlled as follows:

� By the DPL_opts parameter of the DPL_request
� By the SYNCONRETURN option, either specified or omitted, on the EXEC CICS LINK 

PROGRAM command

Specifying SYNCONRETURN, a syncpoint is taken on completion of each DPL request. If 
SYNCONRETURN is omitted, a syncpoint (implicit or explicit) is taken within the client 
application program. Implicit syncpoint is taken when the EXCI program ends. Implicit 
syncpointing is not recommended because there can be situations when the EXCI client 
program cannot determine the actual result of an implicit syncpoint. Furthermore, in some 
cases, high level languages suppress errors that should result in backout. Therefore, explicit 
syncpoint is recommended.

Explicit syncpointing is controlled by coding the RRS API for commit or rollback in the client 
program. Once the client program decides that the current UR has to be committed, it should 
use one of the following RRS APIs to either commit or back out the changes:

� To commit, use SRRCMIT

� To back out, use SRRBACK

Application programming models
There are two different application programming models when using EXCI, as explained here:

EXCI call with SYNCONRETURN option
In this model, neither CICS nor the EXCI API use RRS services.

This technique offers the following advantages.

� The programming model is very simple.
� The EXCI client and target CICS region can reside in different z/OS images in a sysplex.

The technique also has a disadvantage:

� CICS commits resource updates every time it returns to the requesting EXCI client. 
Therefore you cannot implement spanned UOW and potentially sophisticated application 
code to handle error situations if the application is performing updates across more than 
EXCI calls.

Note: In this model, the client must be in the same sysplex as the CICS server.

EXCI call without SYNCONRETURN option
Omitting SYNCONRETURN means that you are using RRS services to control syncpointing 
within the EXCI client. Explicit SYNCPOINT requests should be removed from the server 
application. The flow is as follows:

1. When the CICS SIT parameter RRMS=YES is specified, CICS TS registers with RRMS as 
a resource manager at CICS startup.

 

 

 

108 Systems Programmer’s Guide to RRS



 

2. When the EXCI client program issues a DPL_request that does not specify the 
SYNCONRETURN option, RRS is involved to assign a context token to the EXCI call.

3. The UR identifier is included on the DPL request that is passed to the CICS server region. 
If the DPL request is the first within the UR, CICS calls RRS and expresses interest in this 
UR, attaches a new mirror transaction, and links to the server application program. The 
server program completes its work, which might include updates to recoverable resources 
and/or daisy-chaining to other CICS regions.

4. When the server program completes, it returns control to the client program.

5. When the client program is ready to commit or back out the changes, the program invokes 
RRS to begin the two-phase commit protocol.

6. RRS acts as main coordinator and either:

a. Asks the resource managers to prepare to commit all updates within the UR. If all the 
interested resource managers vote yes, RRS tells them to commit the changes. If any 
resource manager votes no, RRS tells the resource managers to perform backout.

b. Tells all the interested resources managers to perform backout of all changes made 
with the UR.

The UR is now complete and CICS detaches the mirror task. 

This technique offers the following advantages.

� A single UR can consist of multiple DPL calls initiated by multiple EXCI calls.
� While accessing CICS resources through EXCI, you can also update resources controlled 

by other resource managers that support the RRS interface in the same UOW.
� The application logic on the client side decides at which point in time a syncpoint should 

be taken. In this way it is possible to invoke a single logical commit across different 
resource managers, including multiple CICS regions.

The technique also has a disadvantage:

� The target server program has to reside on the same z/OS image as the client program. 
Even with this restriction, the target server program can be chained to a CICS region in a 
different image within a sysplex.

Note: Transactional EXCI is supported only by CICS TS 1.3 and later.

Mixing the two options (with SYNCONRETURN and without SYNCONRETURN) in the same 
EXCI client application is possible. However, each time that an EXCI CALL or LINK with 
SYNCONRETURN is issued, a new UOW is created and it is separated from the UOW that is 
created by an EXCI without SYNCONRETURN. 

10.2  CICS restart and recovery with RRS
In these sections, we give examples of messages your syslog will show as a result of various 
failure scenarios.

10.2.1  RRS failure
In this scenario, CICS TS is using RRS to coordinate DPL requests that are issued without 
the SYNCONRETURN option. In case of RRS failure and unavailability, the CICS TS region 
will not be able to satisfy this type of request; however, all other types of request will be 
processed by the CICS region.

 

 

 

Chapter 10. CICS Transaction Server 109



 

When RRS fails, the CICS region recognizes that the RRS exit manager is unavailable and 
and issues the message shown in Example 10-1.

Example 10-1   CICS syslog during RRS failure

DFHRX0105I SCSCERW1 The Resource Recovery Services (RRS) exit manager ATR.EXITMGR.IBM is now unavailable.
.................................................................................................
DFHRX0104I SCSCERW1 The Resource Recovery Services (RRS) exit manager ATR.EXITMGR.IBM is now available.
DFHRX0106I SCSCERW1 Restart processing with Resource Recovery Services (RRS) is beginning.
DFHRX0107I SCSCERW1 Restart processing with Resource Recovery Services (RRS) has ended.

Although in this scenario the CICS region continues to run and process work, transactions 
that use RRS to coordinate their updates cannot be successfully executed. When RRS 
returns a status of available, CICS will re-establish a connection with RRS and you should 
receive message DFHRX0104 to confirm that the exit manager is available once more. 

While RRS is not running, transactional EXCI requests might suffer several errors; the most 
common errors are:

� ARXC - CICS either did not register as a resource manager with RRS because system 
initialization parameter RRMS=NO was specified, or the RX domain made requests to 
another CICS system).                                          

� ARXA - RRS might have been shut down after the request was received by CICS. 

10.2.2  CICS restart
At startup, if RRMS=YES has been specified in the SIT parameter table, CICS TS registers 
with RRS. “RX” is the acronym CICS uses to identify the RRMS domain manager. 
Example 10-2 shows the messages issued during normal CICS startup.

Example 10-2   CICS startup

DFHRX0100I SCSCERW3 RX domain initialization has started.
DFHRX0104I SCSCERW3 The Resource Recovery Services (RRS) exit manager ATR.EXITMGR.IBM is 
now available.
DFHRX0101I SCSCERW3 RX domain initialization has ended.

DFHRX0106I SCSCERW3 Restart processing with Resource Recovery Services (RRS) is beginning.
DFHRX0107I SCSCERW3 Restart processing with Resource Recovery Services (RRS) has ended.

10.2.3  Operator commands

CEMT INQUIRE RRMS
You can issue the CEMT INQUIRE RRMS command to the CICS region to explore the RRS 
environment. This command can be used to determine whether or not CICS accepts inbound 
transactional EXCI work. A status of Open means that CICS will accept inbound transactional 
EXCI units of work.

Example 10-3   CEMT Inquiry RRMS

CEMT I RRMS

STATUS:  RESULTS   
 Rrm Ope           

 

 

 

110 Systems Programmer’s Guide to RRS



 

CEMT INQUIRE UOW
CEMT INQUIRE UOW can be used to obtain information about a named unit of work, or 
about all the UOWs currently in the system. It displays the state of the UOW (for example, 
INDOUBT) and whether it is active, waiting, or shunted. 

If you suspect a problem with either a recoverable data set or a connection, you can use 
INQUIRE UOW to display UOWs that have been shunted due to a connection or data set 
failure. The command, in some cases, displays the name of the resource that caused the 
UOW to be shunted, plus the transaction, user, and terminal that started it; see 
Example 10-4. 

Example 10-4   Inquiry for a UOW status

CEMT I UOW                                               
 STATUS:  RESULTS - OVERTYPE TO MODIFY                    
  Uow(BAABCBA5C5ACE041) Inf Act Tra(CSOL) Tas(0000003)    
     Age(00366451)                          Use(CICSTS  )

CEMT I UOW                                
RESULT - OVERTYPE TO MODIFY               
  Uow(BAABCBA5C5ACE041)                   
  Uowstate( Inflight )                    
  Waitstate(Active)                       
  Transid(CSOL)                           
  Taskid(0000003)                         
  Age(00366934)                           
  Termid()                                
  Netname()                               
  Userid(CICSTS)                          
  Waitcause()                             
  Link()                                  
  Sysid()                                 
  Netuowid(..USIBMSC.SCSCERW1..vE.\...)   
  Otstid()                                

10.2.4  CICS example
In our environment, we used a sample application running in the WebSphere Application 
Server and connecting to CICS TS though the CICS Transaction Gateway. The CICS gateway 
is indirectly involved, as the WebSphere CICS ECI J2C resource adapter runs CTG-supplied 
code. From an RRS point of view, during the life of this application, there should be two 
Resource Managers involved: BBO.CLHA1.CLUA11.WSA11.IBM, representing the 
WebSphere Application Server and DFHRXDM.SCSCERW1.IBM, representing the CICS 
region. This CICS region is started with the EXCI programming interface enabled. The syslog 
shows that the CICS region has been started with RRMS=YES.

Example 10-5   CICS startup syslog

DFHRX0100I SCSCERW1 RX domain initialization has started.             
DFHRX0104I SCSCERW1 The Resource Recovery Services (RRS) exit manager 
DFHRX0101I SCSCERW1 RX domain initialization has ended. 

DFHRX0106I SCSCERW1 Restart processing with Resource Recovery Services
DFHRX0107I SCSCERW1 Restart processing with Resource Recovery Services

 

 

 

Chapter 10. CICS Transaction Server 111



 

As shown in Example 10-6, the syslog also shows that the RRS connection is open.

Example 10-6   CEMT query to verify RRS service are operative

CEMT I RRMS 

I RRMS            
STATUS:  RESULTS  
 Rrm Ope          

At this point, the RRS panel shows that CICS registered to RRS as a resource manager. 
Selecting the option Display/Update RRS related Resource Manager information will 
display the entry FHRXDM.SCSCERW1.IBM, representing the CICS region with a status of 
Run; see Example 10-7.

Example 10-7   Display Resource Manager Status

Commands: v-View Details u-View URs r-Remove Interest                        
                                                                              
 S   RM Name                          State             System   Logging Group
     BBO.CLA11.CLUA11.WSA11.IBM       Reset             SC48     WTSCPLX1     
     BBO.CLHA1.BBON001.BBON001.IBM    Run               SC48     WTSCPLX1     
     BBO.CLHA1.CLHA1.SC48.IBM         Set               SC48     WTSCPLX1     
     BBO.CLHA1.CLHA1DM.WSHA1DM.IBM    Run               SC48     WTSCPLX1     
     BBO.CLHA1.CLUA11.WSA11.IBM       Run               SC48     WTSCPLX1     
     BBO.CLHA1.WSHA1.WSHA1A.IBM       Reset             SC48     WTSCPLX1     
     BBO.WHCELL.WHAGNTA.WHAGNTA.IBM   Run               SC48     WTSCPLX1     
     BBO.WHCELL.WHCELL.SC48.IBM       Set               SC48     WTSCPLX1     
     BBO.WHCELL.WHDMGR.WHDMGR.IBM     Run               SC48     WTSCPLX1     
     BBO.WHCELL.WHSR01.WHSR01A.IBM    Run               SC48     WTSCPLX1     
     BBO.WHCELLA.WHSR01.WHSR01A.IBM   Reset             SC48     WTSCPLX1     
     CSQ.RRSATF.IBM.MQ4B              Run               SC48     WTSCPLX1     
     DFHRXDM.SCSCERW1.IBM             Run               SC48     WTSCPLX1     
     DSN.RRSATF.IBM.DB4B              Run               SC48     WTSCPLX1     
     DSN.RRSPAS.IBM.DB4B              Run               SC48     WTSCPLX1     
     HWS.IM4BCONNV021.SVL.SANJOSE.IBM Run               SC48     WTSCPLX1     
     IMS.IM4B____V081.STL.SANJOSE.IBM Run               SC48     WTSCPLX1 

Now the environment is ready to run the application. From the Web browser, you can issue a 
request to execute a trade operation (this requires a CICS transaction to be executed in order 
to update the VSAM file with the trading request). Transaction response time is very fast, so it 
is difficult to see transactions while they are in-flight in the RRS panel. However, you can track 
their execution in the RRS ARCHIVE log; Example 10-8 shows a sample log record of a 
transaction. 

Example 10-8   CICS EXCI call reported in RRS ARCHIVE log stream

SC48     2004/01/29 17:01:26.163470 BLOCKID=00000000416EDD16           
  URID=BAB258B77E8C6000000003C5010E0000 JOBNAME=WSA11S   USERID=ASSR1  
  PARENT URID=00000000000000000000000000000000                         
  SURID=N/A                                                            
  WORK MANAGER NAME=BBO.CLHA1.CLUA11.WSA11.IBM                         
  SYNCPOINT=Commit  RETURN CODE=00000000                               
  START=2004/01/29 22:01:26.158855 COMPLETE=2004/01/29 22:01:26.163262 
  EXITFLAGS=00840000                                                   
  LUWID=USIBMSC.SCSCERW1 B258B78F69B8 0001  TID=             GTID=     

 

 

 

112 Systems Programmer’s Guide to RRS



 

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)                        
  GTRID=                                                                        
BAB258B739BA78030000004700000011BA1DDA49113244A40000018000000003090C060B        
  BQUAL=                                                                        
BAB258B739BA78030000004700000011BA1DDA49113244A40000018000000003090C060B00000001
  RMNAME=DFHRXDM.SCSCERW1.IBM             ROLE=Participant                      
    FLAGS=10020000 PROTOCOL=PresumeAbort                                        
    StateCheck EXIT RC=Uncalled                                                 
    Prepare    EXIT RC=Uncalled                                                 
    DistSp     EXIT RC=Uncalled                                                 
    Commit     EXIT RC=Uncalled                                                 
    Backout    EXIT RC=Uncalled                                                 
    EndUr      EXIT RC=Uncalled                                                 
    ExitFailed EXIT RC=00000000                                                 
    Completion EXIT RC=Uncalled                                                 
    OnlyAgent  EXIT RC=00000000 

This record documents the unit of recovery associated with our application request. The work 
manager name is our WebSphere Application Server, which is requesting the commit as a 
result of the transaction completion. The CICS region expressed interest in this UR, which is 
why it is now associated with a role of Participant. In this case, WebSphere Application Server 
is initiating the two-phase commit protocol, RRS is the coordinator, and CICS is participating 
as a resource manager. In our environment we decided to go a step further and put the EXCI 
request under monitoring. From a CICS session, we entered CEDX CSMI,ON to put the 
mirroring transaction under monitoring. As a result, when a request was sent from 
WebSphere Application Server to the CICS region, we could follow each major step of the 
transaction on the terminal that had been set up with the CEDX monitoring facility. At this 
point, selecting the RRS panel RRS Unit of Recovery showed that there was an in-flight unit 
of recovery associated with our environment; see Example 10-9.

Example 10-9   Unit of Recovery 

Commands: v-View Details c-Commit b-Backout r-Remove Interest f-View UR Family
                                                                              
S   UR Identifier                     System    Logging Group                 
                                         State         Type  Comments         
    BAC8FFC87E91A00000000005010E0000  SC48      WTSCPLX1                      
                                         InFlight      Prot 

A request for the in-flight UR details provided the information shown in Example 10-10.

Example 10-10   In-flight Unit of Recovery details

Commands r-Remove Interest v-View URI Details           
                                                        
UR identifier : BAC8FFC87E91A00000000005010E0000        
Create time : 2004/02/16 22:26:01.297790      Comments :
UR state : InFlight      UR type : Prot                 
System : SC48      Logging Group : WTSCPLX1             
SURID : N/A                                             
Work Manager Name : BBO.CLHA1.CLUA11.WSA11.IBM          
   Display Work IDs           /  Display IDs formatted  
   Luwid  . : Present                                   
   Eid  . . : Not Present                               
   Xid  . . : Present                                   
Expressions of Interest:                                
S   RM Name                           Type  Role        
    DFHRXDM.SCSCERW1.IBM              Prot  Participant 

 

 

 

Chapter 10. CICS Transaction Server 113



 

A request for the work ID details provided the CICS region application ID, as shown in 
Example 10-11.

Example 10-11   Work ID details

UR identifier : BAC8FFC87E91A00000000005010E0000                      
                                                                      
                                                               More:  
Logical Unit of Work Identifier (LUWID):                              
 USIBMSC.SCSCERW1 C8FFC97F1F06 0001                                   
                                                                      
 NetID.LuName : USIBMSC.SCSCERW1                                      
 TP Instance  : C8FFC97F1F06                                          
 SeqNum . . . : 0001                                                  
                                                                      
Enterprise Identifier (EID)                                           
 TID  :               (decimal)                                       
 GTID :                                                               
                                                                      
                                                                      
                                                                      
X/Open Transactions Identifier (XID)                                  
 Format ID : 003284271494  (decimal)                                  
            C3C20186  (hexadecimal)                                   
 GTRID : 00-0F BAC8FFC8 E3B53842 0000004C 00000006 |.H.HT......<....| 
         10-1F BA1DDA49 113244A4 00000180 00000003 |.......u........| 
         20-23 090C060B                            |....            | 

                                                                       
 BQUAL : 00-0F BAC8FFC8 E3B53842 0000004C 00000006 |.H.HT......<....|  
         10-1F BA1DDA49 113244A4 00000180 00000003 |.......u........|  
         20-27 090C060B 00000001                   |........        |  
                                                                       

Finally, details about the Resource Manager involved were also displayed; see 
Example 10-12.

Example 10-12   Unit of Recovery Resource manager details

UR identifier : BAC8FFC87E91A00000000005010E0000  
URI token . . : 7E690000000000040055000255555555  
RM name . . . : DFHRXDM.SCSCERW1.IBM              
Type  . . . . : Prot          Status . : ACTIVE   
Role  . . . . : Participant   State  . : InFlight 
SURID : N/A                                       
                                                  
Exit/State      Status                  Duration  
BACKOUT  . . . : Uncalled                         
COMPLETION . . : Uncalled                         
COMMIT . . . . : Uncalled                         
DSE/IN_DOUBT . : Uncalled                         
End_UR . . . . : Uncalled                         
EXIT_FAILED  . : Uncalled                         
ONLY_AGENT . . : Uncalled                         
PREPARE  . . . : Uncalled                         
STATE_CHECK  . : Uncalled 

 

 

 

114 Systems Programmer’s Guide to RRS



 

Chapter 11. IMS 

In this chapter, we describe how IMS V8 uses RRS. 

The chapter covers the following topics:

� IMS V8 RRS requirements

� IMS features that exploit RRS

� RRS facilities that are exploited

� Restart and recovery issues

11
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 115



 

11.1  How IMS/ESA exploits RRS
IMS/ESA has provided RRS support since V6. In this chapter we discuss IMS features that 
use RRS for connecting to both IMS/DB and IMS/TM.

IMS/ESA supports both single-phase and two-phase commit transactions—but traditionally, 
IMS/ESA is the commit manager. IMS/ESA TM provides support for distributed two-phase 
commit where IMS is not the start point of the transaction. 

In this case, IMS/ESA is not the Global Sync-Point Manager (GSPM). IMS provides support 
for what it calls Distributed Sync Point Support. This support allows APPC and Open 
Transaction Manager Access (OTMA) and application programs and OTMA remote 
application programs to participate with IMS in protected conversation with coordinated 
resource updates. This is done by Resource Recovery Services (RRS) managing the 
syncpoint process on behalf of the conversation participants: the application program and 
IMS (acting as resource manager).

11.2  Connecting to IMS/ESA
In the following sections, we describe various ways to connect to IMS/ESA DB and TM that 
use RRS, as follows:

� ODBA
� APPC/IMS
� OTMA

11.2.1  ODBA
Customers need the ability to access IMS-managed databases from application processing 
environments that are not managed by IMS. Open Database Access (ODBA) is a callable 
interface that can be used by any OS/390 application program (that uses the Recovery 
Resource Services of OS/390 as a syncpoint manager) to issue DL/I calls to an IMS DB 
subsystem. The application and IMS must coexist on the same OS/390 image.

The ODBA interface allows IMS DB and OS/390 application programs to be developed, 
installed, and maintained independently of each other. This independence provides failure 
isolation and resource recovery using OS/390 Resource Recovery Services (RRS).

ODBA works on a Recoverable Resource (RRS)-managed application to an IMS 
DB-supported system; this means on a DBCTL-generated IMS system or a DB/TM IMS 
system.

The types of programs that can call the ODBA interface are DB2 for OS/390 stored 
procedures, WebSphere Application Server for z/OS, IMS Object Connector applications, and 
other OS/390 applications.

The ODBA interface resides in an OS/390 address space. The OS/390 address space is 
recognized by IMS as an OS/390 application region. The ODBA interface uses the IMS 
Database Resource Adapter (DRA) to communicate with IMS DB, as shown in Figure 11-1.

 

 

 

116 Systems Programmer’s Guide to RRS



 

Figure 11-1   ODBA configuration

An example of an ODBA implementation is the JDBC driver provided by IMS/ESA. This driver 
is used by WebSphere Application Server for z/OS to provide JDBC connectivity to an IMS 
database.

IMS V8 provides a JCA-compliant resource adapter that provides a JDBC interface to an IMS 
system. The connection to IMS is via the IMS Open Database Access (ODBA) interface.

From an IMS view, WebSphere Application Server for z/OS is an application region that is 
using the ODBA interface. As with any other application region using ODBA, it must be 
registered to RRS as a resource manager. RRS provides the two-phase commit support and 
may act as the syncpoint coordinator.

From a WebSphere Application Server view, the resource adapter is RRSTransactional and 
must be run as a part of a global transaction. In this scenario, WebSphere Application Server 
may take the RRS SDSRM role for this transaction, depending on what other type of resource 
managers are involved. If all resource managers involved are RRSTransactional, then RRS 
will be the syncpoint manager. If there are XA resource managers involved, then WebSphere 
Application Server will take the SDSRM role.

For the IMS JDBC connect with WebSphere Application Server for z/OS, WebSphere 
Application Server and the ODBA-attached IMS system must reside on the same z/OS 
image, and RRS must be active on that image.

11.2.2  APPC/IMS
APPC/IMS, a part of IMS TM, lets you use the CPI-C (Common Programming Interface for 
Communications) interface to build CPI application programs. APPC/IMS allows distributed 
and cooperative processing between IMS and systems that have implemented APPC. 
APPC/IMS delivers support for APPC with facilities provided with APPC/MVS. APPC/IMS 

O
D
B
A

D
R
A

IMS
Database
Manager
(DLI SAS)

OS/390

IMS
Databases

OS/390
Application
Region

 

 

 

Chapter 11. IMS 117



 

supports the CPI resource recovery Commit (SRRCMIT) and Backout (SRRBACK) calls for 
IMS-managed local resources. These protected resources include: 

� IMS TM message-queue messages
� IMS DB databases
� DB2 database

APPC/IMS also supports the existing IMS DL/I application programming interface (API) 
enabling application programs to use LU 6.2 communications without the function of the CPI 
Communications interface. This allows most existing applications to continue to function with 
the APPC/IMS support of LU 6.2.

Recommendation
For APPC/IMS, do the following:

� IMS standard or modified (mixed mode) application programs may be scheduled on 
remote IMSs through MSC for messages entered from LU 6.2 devices. Be aware that 
CPI-C driven application programs cannot be transactions that execute on remote 
systems.

� Define your APPC/IMS LUs for use by APPC/MVS, as well as by any APPC application 
program.

� Use the LTERM and MODNAME in the first segment of your input message for standard 
and modified (mixed mode) applications if the application logic depends on them. Output 
can be sent to an APPC device or a non-APPC device through an Alternate Destination 
PCB. Expect a MODNAME on output to an APPC device, including the origin device, if the 
application program chooses a different layout for the message.

� Use a network-qualified LU name. You do not need to have unique names for the LUs on 
different systems. 

IMS-dependent regions are automatically defined to APPC as subordinate address spaces of 
the IMS Scheduler. An IMS BMP cannot be defined as an ASCH-controlled application. It may 
use explicit conversation services through the IMS base LU. 

IMS manages the APPC/IMS buffers automatically, so no definition is necessary. No special 
considerations are needed for EMH. For more details, refer to IMS/ESA V8 Admin Guide: 
Transaction Manager, SC26-8014.

The APPC synchronization level defines the protocol that is used when changing 
conversation states. APPC and IMS supports the following SYNC_LEVEL values.

NONE Specifies that the programs do not issue calls or recognize returned 
parameters relating to synchronization.

CONFIRM Specifies that the programs can perform confirmation processing on 
the conversation.

SYNCPT Specifies that the programs participate in coordinated commit 
processing on resources that are updated during the conversation 
under the RRS recovery platform. A conversation with this level is also 
called a protected conversation.

Allocating a conversation with SYNCLVL=SYNCPT requires the Resource Recovery Services 
(RRS) as the sync-point manager (SPM). RRS controls the commitment of protected 
resources by coordinating the commit or backout request with the participating owners of the 
updated resources, the resource managers. IMS is the resource manager for DL/I, Fast Path 
data, and the IMS message queues. The application program decides whether the data is to 
be committed or aborted and communicates this decision to the SPM. The SPM then 
coordinates the actions in support of this decision among the resource managers. 

 

 

 

118 Systems Programmer’s Guide to RRS



 

IMS application programs can use the IMS implicit API to access LU 6.2 devices. This API 
provides compatibility with non-LU 6.2 device types so that the same application program can 
be used from both LU 6.2 and non-LU 6.2 devices. The API adds to the APPC interface by 
supplying IMS-provided processing for the application program. You can use the explicit CPI 
Communications interface for APPC functions and facilities for new or rewritten IMS 
application programs.

APPC/IMS supports three different types of application programs:

Standard No explicit use of CPI-C facilities.

Modified Uses the I/O PCB to communicate with the original input 
terminal but can use CPIC as well for outbound 
conversations.

CPI Communications driven Uses CPI-C calls to receive the incoming message and to 
send a reply on the same conversation. Uses the DL/I APSB 
call to allocate a PSB to access IMS databases and alternate 
PCBs.

For more information about application programming types, refer to IMS/ESA V8 
Administration Guide: Transaction Manager.

You must set SYNCLVL=SYNCPOINT on each APPC conversation in a distributed 
transaction. The protection ring is broken if a conversation is allocated with SYNCLVL=NONE 
or CONFIRM. Whenever IMS commit processing is invoked in a protected conversation 
environment, IMS passes control to RRS for commit coordination. IMS issues the OS/390 
ATRCMIT for implicit mode applications. Explicit mode applications issue the SRRCMIT verb 
directly.

IMS registers itself to RRS at startup, and thereafter APPC/MVS establishes a private context 
for each transaction involving a protected conversation. Only valid work units (units of 
recovery) are of interest to RRS, so only active IMSs register. Neither alternate nor backup 
IMSs will register until they become the Active IMS.

 

 

 

Chapter 11. IMS 119



 

S

Figure 11-2   APPC/IMS distributed transaction example

Multiple RRSs may be involved in the process where a protected conversation straddles 
multiple OS/390s, but only one RRS is allowed on each OS/390. APPC/MVS (protected 
conversations) is responsible for communications between participating commit managers, 
as illustrated in Figure 11-2. In this instance APPC/MVS is acting as a communications 
resource manager. Refer to Chapter 5, “RRS operations” on page 45, for a discussion of 
communication resource managers.

All the resource and commit managers harden their knowledge of the status of each part of 
the protected conversation so that they can reestablish consistency after any sort of system 
failure. IMS places the UOR identifier in the x’5611’ log record to enable resynchronization 
with RRS after a restart.

Before you can work with APPC/IMS, you must establish the APPC/IMS support. For detailed 
information about establishing APPC/IMS support refer to “Establishing APPC/IMS” in 
IMS/ESA V8 Admin Guide: Transaction Manager and z/OS V1R4 MVS Planning: APPC 
Management, SA22-7599.

Example 11-1   IMS VTAM appl

Adding ATNLOSS and SYNCLVL Parameters to the VTAM LU APPL Statements:
To allow APPC/MVS TPs and their partner TPs to establish protected 
conversations, we added the following to the VTAM LU APPL statements:
 
  SCSIM6CA       APPL ACBNAME=SCSIM6CA                                   C
                 APPC=YES,                                               C
                 PARSESS=YES,                                            C
                 EAS=100,                                                C
                 ATNLOSS=ALL ,    <---req. for protected conversations   C

RRS
Syncpoint
Manager

IMSA APPC
MVS

Application

MVSA

RRS
Syncpoint
Manager

IMSB
APPC
MVS

Application

MVSB

 

 

 

120 Systems Programmer’s Guide to RRS



 

                 SYNCLVL=SYNCPT , <---req. for protected conversations   C
                 SECACPT=NONE,                                           C
                 SRBEXIT=YES,                                            C
                 DLOGMOD=LU62APPC,                                       C
                 MODETAB=SCMODIMS

APPC/IMS shared queue support
IMS/ESA V8 introduced support for synchronous OTMA and APPC workloads to be 
distributed and executed on any IMS system in the shared queue group. In “OTMA”, we 
describe how IMS uses RRS to provide this support.

11.2.3  OTMA
IMS Open Transaction Manager Access (OTMA) is a transaction-based, connectionless 
client/server protocol. It uses the XCF API and can therefore operate across a sysplex. OTMA 
is designed to offer high performance client access to IMS without the overhead normally 
associated with communications protocols (such as SNA).

OTMA provides support for protected conversations (OTMA “send-then-commit” mode with 
sync_level=synpt, which is also known as Commit Mode 1, or CM1). The two-phase commit 
support is provided by RRS. In this case, the OTMA client must reside on the same z/OS 
image as the target IMS system.

OTMA is used by a number of IBM and non-IBM products to access IMS. Examples are IMS 
Connect V2.1 and transactional RPC. OTMA is documented in OTMA Guide and Reference, 
SC26-8743.

OTMA Client Attach
While all that is necessary for most applications programming involving RRS is to issue the 
SRRCMIT or SRRBACK calls, with OTMA you are required to delve deeper.

If you wish your application to update protected resources in other resource managers as well 
as IMS within one unit or work, then the OTMA client must register with RRS as a resource 
manager and must acquire a private context, which it then includes on the OTMA call to IMS. 

The MPR that IMS schedules will then run using the supplied private context, and RRS 
context services can tie in any work performed within the unit of work. The OTMA client 
application and IMS will both be resource managers, from an RRS view. When using RRS 
with OTMA, the client must reside on the same OS/390 image as the target IMS system. This 
is an RRS restriction.

OTMA shared queue support
IMS V8 introduced support for synchronous OTMA and APPC workloads to be distributed 
and executed on any IMS system in the shared queue group. Prior to IMS/ESA V8, only 
asynchronous OTMA messages could be processed on any system in the shared queue 
group. That meant that only OTMA “commit-then-send” mode was supported, and it was not 
possible to have protected conversation. The support added in IMS/ESA V8 allows OTMA to 
use protected conversations (OTMA “send-then-commit” mode with sync_level=synpt) with 
support for shared queues.

IMS V8 uses RRS multisystem cascaded transactions support provided in z/OS V1.2 to 
achieve this. Refer to “Distributed RRS” on page 23 for a discussion of RRS cascaded 
transaction support.

 

 

 

Chapter 11. IMS 121



 

Figure 11-3   OTMA/APPC synchronous shared queue support

Figure 11-3 shows the general flow for an OTMA or APPC protected conversation with shared 
queue support. RRS cascaded transaction support links the unit of recovery (UR) on the 
front-end IMS system (UR1, the parent UR in the cascaded transaction) with the UR on the 
back-end IMS system (UR2 the child UR in the cascaded transaction) and ensures RRS can 
mange the two URs within one transaction.

IMS has the following requirements for synchronous OTMA/APPC shared queue support:

� ALL IMS systems in the shared queue group are at IMS V8 or above
� All IMS control regions are started with RRS=Y
� RRS is enabled on all z/OS systems where the IMS systems run
� All z/OS systems are at z/OS V1.2 (plus APAR OW50627)

IMS Connect V2.1
IMS Connect provides a bridge to IMS from TCP/IP attached or local clients using the IMS 
Java connector. IMS Connect uses the OTMA interface to attach to IMS. IMS Connect will 
always use RRS because IMS OTMA attach requires that the client (IMS Connect) be an 
RRS resource manager. The behavior of IMS Connect depends on whether TCP/IP attach or 
local attach is used; in the following sections, we examine both scenarios.

TCP/IP attach to IMS Connect
The resource adapter for WebSphere Application Server for z/OS supplied by IMS Connect is 
XA-compliant when operating in TCP/IP attach mode. This means that two-phase commit is 
supported from WebSphere Application Server transactions to a TCP/IP connected IMS 
Connect server. 

Establish RRS environment
- invoke cascaded tran support

Synchronous Support General Flow

Deallocate
 or
Send  

Front-end Back-end 

RRS

Determine if synchronous 
SQ environment
 - register with RRS

Enq msg to global queue

Retrieve and deliver IOPCB
reply to client
- receive indication to 
  commit or abort 

Request commit
      or
Backout

Retrieve msg from global queue

Process msg

Send IOPCB reply to Front-end
Go into WAIT-RRS

SQ

Syncpoint ph 1 / ph 2
        or
Backout 

IMS RRS prepare and 
commit exit

Receive input message

Deallocate or get next msg

RRS

Allocate-send-rcv
 or 
Send-then-Commit

wait

pgm interaction
impacted by
sync_level

gu, iopcb
...
isrt, iopcb

NOTE:  This is a high level flow and does not show all possible interactions

XCF

UR1
Parent

UR2
Child

 

 

 

122 Systems Programmer’s Guide to RRS



 

In this environment, IMS Connect will always take on an RRS SDSRM role. This allows IMS 
Connect to act as a communications resource manager (CRM) and interface to other external 
transaction managers using XA protocol. 

In this environment, the IMS Connect server and the OTMA-attached IMS system must reside 
on the same z/O image, and RRS must be active on that image. The WebSphere Application 
Server can be on a remote z/OS image, although it is possible to configure the resource 
adapter to attach in remote mode even if the WebSphere Application Server resides on the 
same z/OS images as IMS Connect and the IMS system. However, this is not a 
recommended configuration. Local attach is more efficient and provides for better restart and 
recovery because RRS will be used.

WebSphere Application Server local attach to IMS Connect
The resource adapter for WebSphere Application Server for z/OS supplied by IMS Connect is 
RRSTransactional when operating in local attach mode. This means that two-phase commit is 
supported from WebSphere Application Server transactions to a locally connected IMS 
Connect server. 

In local mode, the resource adapter communicates to IMS Connect using the MVS Program 
Call (PC) facility. In this environment IMS Connect does not take on an RRS SDSRM role 
because it does not need to communicate with an external transaction manager using XA 
protocol. In this scenario WebSphere Application Server may take the RRS SDSRM role for 
this transaction, depending on what other type of resource managers are involved. If all 
resource managers involved are RRSTransactional, then RRS will be the syncpoint 
coordinator.

In the local attach environment, WebSphere Application Server, the IMS Connect server, and 
the OTMA-attached IMS system must reside on the same z/OS image and RRS must be 
active on that image.

11.3  IMS/ESA restart and recovery with RRS
On restart IMS, like any other DBMS, performs extensive restart and recovery processing. For 
detailed information about IMS restart and recovery processing, refer to IMS/ESA V8 Admin 
Guide: Transaction Manager, SC26-8014. Here, we concentrate on how IMS interacts with 
RRS on restart and recovery, and we examine scenarios that may force manual intervention 
to resolve in-doubt URs with RRS.

For an IMS warm or emergency restart, IMS will process its Online Log Data Sets (OLDS) 
and perform log analysis to determine whether there are any units of work that were in-flight, 
in-commit, in-abort, or in-doubt. IMS will then proceed to commit or back out these units of 
work as appropriate. For any in-doubt URs that represent RRS protected conversations, IMS 
must resync with RRS.

As long as RRS=Y is specified in the IMS Control region parameters, during its restart 
processing IMS will resync with RRS and retrieve any outstanding URs from RRS. IMS calls 
the Begin_retstart_processing (ATRIBRS) RRS service to begin restart processing with RRS. 
RRS will return a list of URs in which IMS has expressed an interest. IMS then retrieves 
information for each outstanding UR using the Retrieve_interest_data (ATRRID) RRS call.

On completion of the RRS resync, you will see the message shown in Example 11-2.

Example 11-2   RRS connection established message

DFS0653I PROTECTED CONVERSATION PROCESSING WITH RRS/MVS ENABLED

 

 

 

Chapter 11. IMS 123



 

You will see the messages shown in Example 11-3, indicating in-doubt URs and when they 
are resolved.

Example 11-3   In-doubt UR message sample

DFS0693I RIS ESTABLISHED FOR PSB xxxxxx,PRTKN=yyyyyy, TOKEN=zzzzzzz, 
RRS-URID=wwwwwwwwwwwwwwwwwwwwwwwwww

DFS0699I RESYNC (COMMIT|ABORT) COMPLETE for PSB xxxxxxx, PRTKN=yyyyyyy,
TOKEN=zzzzzzzz, RRS-URID=wwwwwwwwwwwwwwwwwwwwwwwwww

You can use the /DIS UOR INDOUBT command to display any outstanding URs that are 
in-doubt.

11.3.1  RRS failure while IMS is active
If RRS fails while IMS is running, then all attempts to use RRS protected conversations will 
fail. Application abendU0711 will occur for any application that attempts to use RRS protected 
conversation. IMS will issue the message shown in Example 11-4.

Example 11-4   IMS error message sample for RRS failure

DFS0698W PROTECTED CONVERSATION PROCESSING NOT ENABLED - reason

The message will provide a reason for the failure, such as RRS NOT AVAILABLE. After RRS is 
restarted, IMS will resync with RRS and enable protected conversations again.

11.3.2  IMS restart when RRS is not available
If RRS=Y is specified in the IMS control region parameters and RRS is not available, you will 
receive the message shown in Example 11-5.

Example 11-5   RRS not active message sample

DFS0548A RRS NOT ACTIVE BUT RRS=Y SPECIFIED - REPLY: RETRY,
CONTINUE OR CANCEL

You can reply CONTINUE, but RRS protected conversation support will not be enabled until 
RRS is started on that system. Any attempt by an application to use RRS protected resources 
will result in ABENDU0711.

Also, IMS will not be able to resolve any in-doubt URs where RRS was the syncpoint 
coordinator. These URs will remain in-doubt until RRS is started and IMS can resync with 
RRS.

The IMS operator command /DIS UOR INDOUBT will display any in-doubt RRS URs.

Example 11-6   /DIS UOR INDOUBT sample output

/DIS UOR INDOUBT

ST P-TOKEN PSBNAME RRS-URID IMS-TOKEN
RI 00010120 PLAPJK02 12345678901234567890123456789012 SYS1 0000001300000001

 

 

 

124 Systems Programmer’s Guide to RRS



 

The status RI, as shown in Example 11-6, indicates a residual in-doubt that is an in-doubt 
from a prior IMS execution or a dependent region abend. The display shows both the RRS 
URID as seen in the RRS ISPF panels and RRS logs, and the IMS recovery token.

11.3.3  IMS restart when RRS has been cold-started
If RRS=Y is specified in the IMS control region parameters and RRS has been cold-started 
since IMS was last active, then when IMS contacts RRS to retrieve any outstanding URs, it 
will get none returned. IMS may find units of recovery in its own logs that it expects to be able 
to match with a UR returned from RRS. If this happens, IMS issues message DFS0744A, as 
shown in Example 11-7. 

Example 11-7   IMS restart messages for in-doubt UR

DFS0744A IMS HOLDS AN INDOUBT UOR FOR WHICH RRS HAS NO DATA:
URID-xxxxxxxxxx, TOKEN=yyyyyyyyy

In this case, manual recovery is necessary. Use the IMS command /CHANGE UOR 
ABORT/COMMIT to either back out or commit an in-doubt UR.

There is another, related scenario where IMS is restarted on a system and RRS has been 
started as a part of a different logging group (GNAME parameter on RRS proc). In this 
instance IMS will detect that the RRS it is connecting to is not in the same RRS logging group 
as the RRS it last connected to. IMS treats this situation in the same way as an RRS cold 
start. IMS will perform log processing and if there are any in-doubt URs that IMS has a record 
of that require RRS to determine their outcome, IMS issues message DFS0744A and manual 
intervention will be required.

11.3.4  IMS restart on a different system
As discussed in Chapter 4, “Implementing RRS” on page 31, prior to z/OS V1.6, RRS will 
mark a resource manager as having to restart on the same system if there are outstanding 
URs for that resource manager when it terminated and RRS has remained operational on that 
system. If IMS terminates and there are outstanding URs, then RRS will reject any attempt by 
IMs to restart on another system in the same RRS logging group. 

IMS will receive an return code of F02 from the Begin_retstart_processing (ATRIBRS) RRS 
call indicating that IMS cannot register with RRS on this system. If there are in-doubt URs, 
then IMS will issue message DFSxxxx to indicate that RRS cannot be contacted to resolve 
these in-doubt URs because IMS is being restarted on the wrong system.

This has the same effect as if RRS is unavailable; in-doubt URs cannot be resolved and 
RRSAF and WLM stored procedures will be unavailable. The difference with this scenario is 
that, in order to allow IMS to connect to RRS, IMS must be stopped and either restarted on 
the z/OS system it was originally running on or you must manually remove any outstanding 
URs from RRS in which IMS has an interest. Then IMS can be restarted on the new system. 

Note that this issue only occurs on releases of z/OS prior to V1.6 and only when RRS has 
stayed operational on the original system. It is assumed, if IMS terminates and the z/OS 
system remains operational, that IMS will be restarted on the same system.

 

 

 

Chapter 11. IMS 125



 

11.4  IMS/ESA sample scenario using RRS
For this test we configured the CICS and IMS resource adapters to use RRSTransactional 
support. The WebSphere Application Server application updated both CICS and IMS within 
the scope of one transaction.

Example 11-8 is an extract from the RRS Archive log showing entries related to a successful 
transaction.

Example 11-8   RRS Archive log sample

SC48     2003/12/02 10:49:06.050724 BLOCKID=00000000412FACD1
  URID=BA6919507E8F0000000001F1010F0000 JOBNAME=WSA11S   USERID=ASSR1
  PARENT URID=00000000000000000000000000000000
  SURID=N/A
  WORK MANAGER NAME=BBO.CLHA1.CLUA11.WSA11.IBM
  SYNCPOINT=Commit  RETURN CODE=00000000
  START=2003/12/02 15:49:06.038266 COMPLETE=2003/12/02 15:49:06.050490
  EXITFLAGS=00840000
  LUWID=USIBMSC.SCSCERW1 691951BA88FB 0001  TID=             GTID=

  FORMATID=003284271494 (decimal) C3C20186 (hexadecimal)
  GTRID=
BA691950551DB8230000003600000009BA1DDA49113244A40000018000000003090C060B
  BQUAL=
BA691950551DB8230000003600000009BA1DDA49113244A40000018000000003090C060B00000001
RMNAME=IMS.IM4B____V081.STL.SANJOSE.IBM ROLE=Participant
    FLAGS=10021000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000000
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=00000000
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled
  RMNAME=DFHRXDM.SCSCERW1.IBM             ROLE=Participant
    FLAGS=10001000 PROTOCOL=PresumeAbort
    StateCheck EXIT RC=Uncalled
    Prepare    EXIT RC=00000000
    DistSp     EXIT RC=Uncalled
    Commit     EXIT RC=00000010
    Backout    EXIT RC=Uncalled
    EndUr      EXIT RC=Uncalled
    ExitFailed EXIT RC=00000010
    Completion EXIT RC=Uncalled
    OnlyAgent  EXIT RC=Uncalled

In this example we see that WebSphere Application Server, which is the work manager from 
an RRS point of view, has issued a commit. RRS is the syncpoint coordinator and there are 
two resource managers: IMS.IM4B____V081.STL.SANJOSE.IBM (our IMS system) and 
DFHRXDM.SCSCERW1.IBM (our CICS system). WebSphere Application Server, in this 
case, does not take an SDSRM role because in our transaction there are only 
RRSTransactional RMs involved.

 

 

 

126 Systems Programmer’s Guide to RRS



 

For each resource manager we see that the Prepare, Commit and ExitFailed exits are driven 
by RRS. The CICS commit exit returns x’10’ which signifies ATRX_FORGET. This means 
CICS has completed commit processing and requests RRS to delete its interest in this UR.

 

 

 

Chapter 11. IMS 127



 

 

 

 

128 Systems Programmer’s Guide to RRS



 

Chapter 12. WebSphere MQ for z/OS

In this chapter, we describe how WebSphere MQSeries V5.3 for z/OS uses RRS. 

This chapter covers the following topics:

� WebSphere MQ V5.3 RRS requirements

� WebSphere MQ features that exploit RRS

� RRS facilities that are exploited

� Restart and recovery issues

12
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 129



 

12.1  WebSphere MQ RRS requirements
WebSphere MQ provides two RRS adapters that allow batch applications that connect to 
WebSphere MQ, as well as to DB2 stored procedures, to use RRS coordinated commit 
processing. The adapters allow WebSphere MQ to be a full participant in RRS coordination of 
two-phase commit syncpoints.

The WebSphere MQ RRS adapters can be used in the same way as the Batch/TSO adapter. 
The WebSphere MQ RRS adapters support simultaneous connections to multiple 
WebSphere MQ queue managers running on a single z/OS instance from a single task, and 
they support the ability to switch a WebSphere MQ batch thread between TCBs.

The WebSphere MQ provided RRS adapters are:

CSQBRSTB This stub allows you to use two-phase commit and backout for applications 
using RRS callable resource recovery services instead of the MQI calls 
MQCMIT and MQBACK. CSQBRSTB requires you to use SRRCMIT and 
SRRBACK. If your program still uses MQCMIT or MQBACK, when linked 
with CSQBRSTB, you will receive MQRC_ENVIRONMENT_ERROR return 
code.

CSQBRSSI This stub allows you to use either MQI calls MQCMIT and MQBACK or 
SRRCMIT and SRRBACK. If you use MQCMIT and MQBACK, WebSphere 
MQ actually implements these calls as the SRRCMIT and SRRBACK RRS 
calls.

The bind step for an application that wants to use RRS must include one of these stubs. 
There is no dynamic support for these stubs. Both stubs are shipped with linkage attributes 
AMODE(31) and RMODE(ANY).

12.1.1  WebSphere MQ and DB2 stored procedures
If you use DB2 stored procedures with RRS, you should be aware of the following:

� DB2 stored procedures that use RRS must run under the control of WLM.

� If a DB2 stored procedure using WebSphere MQ calls is linked with either RRS stub, the 
MQCONN or MQCONNX call returns MQRC_ENVIRONMENT_ERROR.

� If a WLM-managed DB2 stored procedure contains WebSphere MQ calls and is linked 
with a non-RRS stub, the MQCONN or MQCONNX call returns 
MQRC_ENVIRONMENT_ERROR.

� If your DB2 stored procedure contains WebSphere MQ calls and is linked with a non-RRS 
stub, WebSphere MQ resources updated in that stored procedure are not committed until 
the stored procedure address space ends, or until a subsequent stored procedure does an 
MQCMIT.

� Multiple copies of the same DB2 stored procedure can execute concurrently in the same 
address space. You should ensure that your program is coded in a re-entrant manner if 
you want DB2 to use a single copy of your stored procedure.

� You must not code MQCMIT and MQBACK in a WLM-managed DB2 stored procedure.

� All programs must be designed to run in Language Environment® (LE).

12.1.2  WebSphere MQ JMS interface
The WebSphere MQSeries classes for Java provide a JMS-compliant interface for Java 
programs to invoke messaging services using MQSeries. On z/OS, this interface uses the MQ 

 

 

 

130 Systems Programmer’s Guide to RRS



 

RRS adapter, which provides two-phase commit between the Java application and MQSeries. 
The Java application must use MQ bindings mode; client connection is not supported from a 
Java program on z/OS. The Java program and the MQ queue manager must reside on the 
same z/OS image.

The WebSphere MQ JMS driver is used by the WebSphere Application Server to provide the 
JMS interface to an external messaging system from an EJB application.

12.2  WebSphere MQ restart and recovery issue with RRS
On restart, MQ performs restart and recovery processing. MQ restart looks very similar to 
DB2 restart. There are four phases:

� Phase 1: Log initialization

MQ identifies the last LOG RBA used before termination so that it can start logging at the 
next RBA.

� Phase 2: Current status rebuild 

MQ determines what URs are outstanding and the status of each UR (in-flight, in-commit, 
in-abort or in-doubt).

� Phase 3: Forward log recovery 

Having determined the outstanding URs in Phase 2 MQ makes all the database changes 
for committed work as well as for in-flight, in-doubt and in-abort URs. For in-flight, in-doubt 
and in-abort URs, MQ locks the changed data to make it unavailable.

� Phase 4: Backward log recovery 

In this phase, MQ reverses changes by in-flight or in-abort URs and releases locks for 
those URs.

During Phase 2 of MQ restart processing, MQ will retrieve any outstanding URs from RRS. 
MQ calls the Begin_retstart_processing (ATRIBRS) RRS service to begin restart processing 
with RRS. RRS will return a list of URs in which MQ has expressed an interest.

12.2.1  RRS failure when MQ is running
If RRS fails while MQ is operational, any MQ facilities that use RRS also fail. That means that 
any applications using the RRS adapter fail. MQ stays operational, but you may see various 
application failures indicated by RC2012 2012 MQRC_ENVIRONMENT_ERROR because 
RRS in unavailable.

MQ Queue sharing uses the DB2 RRSAF facility to connect to DB2, so a failure of RRS will 
remove an MQ queue manager from an MQ queue sharing group. The following message is 
issued:

CSQ5026E -MQV1 CSQ5CONN Unable to access DB2, RRS is not available

If RRS is restarted, then MQ reconnects to RRS and applications are able again to connect to 
MQ using the RRS adapter. In an MQ queue sharing group, you can see the following 
message when MQ reconnects to DB2:

CSQ5001I -MQV1 CSQ5CONN Connected to DB2 D7V1

 

 

 

Chapter 12. WebSphere MQ for z/OS 131



 

12.2.2  WebSphere MQ restart if RRS is unavailable
If MQ restarts and RRS is not available, then it cannot resolve any URs that were in-doubt 
where RRS was the syncpoint coordinator and MQ was a participant. For any URs in which 
the state was in-flight, in-commit or in-abort, MQ does not need to retrieve UR data from RRS. 
It can process those UR by backing out any inflight or in-abort URs.

Any in-doubt URs may result in retained locks for the affected data. If there are in-doubt URs, 
then MQ will issue messages CSQ3011I - CSQ3016I to indicate that RRS cannot be 
contacted to resolve these in-doubt URs.

MQ will resync with RRS once RRS is restarted on the z/OS image. At that stage it can 
resolve any in-doubt URs according to the final state that RRS supplies.

Note that when MQ starts and RRS is unavailable, any MQ facilities that require RRS are not 
available. That means any application that attempts to use RRS adapter will get an error. 
Also, if the MQ subsystem is part of a queue sharing group, then MQ will hang on startup until 
it can establish its connection to DB2. MQ queue sharing needs to connect to the DB2 system 
using RRSAF, and this will not be possible until RRS is started on the system. 

MQ issues an error message if it receives an error code from any RRS call made during 
startup:

CSQ3017I csect-name RRS function <call-name> failed, RC=rc

The support for this message is provided with APAR PQ67919 for MQ V5.2 and later. 

12.2.3  WebSphere MQ restart on another system
As discussed in Chapter 4, “Implementing RRS” on page 31, prior to z/OS V1.6, RRS marks 
a resource manager as having to restart on the same system if there are outstanding URs for 
that resource manager when it terminated, and RRS has remained operational on that 
system. If MQ terminates and there are outstanding URs, then RRS rejects any attempt by 
MQ to restart on another system in the same RRS logging group. MQ will receive an return 
code of F02 from the Begin_retstart_processing (ATRIBRS) RRS call, indicating that MQ 
cannot register with RRS on this system. 

MQ issues message CSQ3017I to indicate an RRS failure:

CSQ3017I -MQV1 CSQ3RRSR RRS function ATRIBRS failed, RC=00000F02

If there are in-doubt URs, then DB2 will issue messages CSQ3011I - CSQ3016I to indicate 
that RRS cannot be contacted to resolve these in-doubt URs because MQ is being restarted 
on the wrong system.

This has the same effect as if RRS in unavailable; in-doubt URs cannot be resolved and 
RRSAF and WLM stored procedures will be unavailable. If the MQ subsystem is a part of a 
Queue sharing group, then MQ will not start until it can connect to its DB2—and this cannot 
happen because MQ cannot use the RRSAF facility to speak to DB2.

The difference in this scenario is that in order to allow MQ to connect to RRS, MQ must be 
stopped and either restarted on the z/OS system it was originally running on, or you must 
manually remove any outstanding URs in which MQ has an interest so that RRS will mark MQ 
as “restart anywhere”. Then MQ can be restarted on the new system. 

Note that this issue only occurs on releases of z/OS prior to V1.6 - and only when RRS has 
stayed operational on the original system. It is assumed that if DB2 terminates and the z/OS 
system remains operational, MQ will be restarted on the same system.

 

 

 

132 Systems Programmer’s Guide to RRS



 

12.3  Sample scenarios for WebSphere MQ using RRS
Our test scenario consisted of an MVS batch program written in C that updates both DB2 and 
MQ in one unit of work. The program uses RRSAF to attach to DB2 and uses the MQ RRS 
attach support to connect to MQSeries. The program uses the RRS SRRCMIT and 
SRRBACK calls to perform commit and backout processing.

12.3.1  Normal commit processing scenario
In this scenario we see RRS panel displays and RRS log extracts showing what happens 
during a normal run of the batch job, where we update both DB2 and MQ and then commit 
the updates. The C program we are running waits for a period after updating DB2 and MQ, 
but before issuing a SRRCMIT. This gives us time to display panels and so on.

Before we start the batch job, we look at the status of the DB2 (subsystem D7V1) and MQ 
(subsystem MQV1) resource managers by looking at the RRS ISPF Resource Manager List 
panel, shown in Example 12-1.

Example 12-1   RRS Resource Manager List panel

RRS Resource Manager List          Row 3 to 13 
Command ===>                                                 Scroll ===> 
                                                                         
Commands: v-View Details u-View URs r-Remove Interest                    
                                                                         
S   RM Name                          State             System   Logging G
    CSQ.RRSATF.IBM.MQV1              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.DB7A              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.DB7J              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.DB7L              Run               SC53     WTSCPLX1 
    DSN.RRSATF.IBM.D7V1              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.DB7A              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.DB7J              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.DB7L              Run               SC53     WTSCPLX1 
    DSN.RRSPAS.IBM.D7V1              Run               SC53     WTSCPLX1 
    IMS.IMSC____V081.STL.SANJOSE.IBM Reset             SC53     WTSCPLX1 
    IMS.IMSG____V091.STL.SANJOSE.IBM Reset             SC53     WTSCPLX1

This panel shows the two resource managers that we are interested in: 
DSN.RRSATF.IBM.D7V1 is the DB2 RRSAF resource manager, and 
CSQ.RRSATF.IBM.MQV1 is the MQseries RRS attach resource manager. Both RMs have an 
RRS state of Run, meaning they are registered to RRS on this system (SC53) and have 
completed RRS restart processing.

We now start our batch job and display the RRS UR details using the RRS ISPF panel, as 
shown in Example 12-2.

Example 12-2   RRS UR Details view

                          RRS Unit of Recovery List            Row 1 to 1 of 1
RRS Unit of Recovery Details          Row 1 to 2 
Command ===>                                                 Scroll ===> P
                                                                          
Commands r-Remove Interest v-View URI Details                             
                                                                          
UR identifier : BB67A49B7E5CEDD00000001001010000                          

 

 

 

Chapter 12. WebSphere MQ for z/OS 133



 

Create time : 2004/06/22 02:44:42.478089      Comments :                  
UR state : InFlight      UR type : Prot                                   
System : SC53      Logging Group : WTSCPLX1                               
SURID : N/A                                                               
Work Manager Name : SC53.MURPHYAR.0026                                    
   Display Work IDs              Display IDs formatted                    
   Luwid  . : Not Present                                                 
   Eid  . . : Not Present                                                 
   Xid  . . : Not Present                                                 
Expressions of Interest:                                                  
S   RM Name                           Type  Role                          
    CSQ.RRSATF.IBM.MQV1               Prot  Participant                   
    DSN.RRSATF.IBM.D7V1               Prot  Participant

This panel shows the UR details. Both RMs have an RRS role of Participant, meaning that 
RRS will act as syncpoint coordinator.

When the batch program finally commits the updates, the UR moves to a state of Forgotten. 
We can view the RRS Archive log, as shown in Example 12-3, to see a record of the commit.

Example 12-3   RRS Archive log extract

RRS/MVS LOG STREAM BROWSE DETAIL  REPORT                               
                                                                       
READING ATR.WTSCPLX1.ARCHIVE       LOG STREAM                          
                                                                       
SC53     2004/06/21 22:46:42.504857 BLOCKID=0000000079876D89           
  URID=BB67A49B7E5CEDD00000001001010000 JOBNAME=MURPHYAR USERID=MURPHYA
  PARENT URID=00000000000000000000000000000000                         
  SURID=N/A                                                            
  WORK MANAGER NAME=SC53.MURPHYAR.0026                                 
  SYNCPOINT=Commit  RETURN CODE=00000000                               
  START=2004/06/22 02:46:42.484323 COMPLETE=2004/06/22 02:46:42.504683 
  EXITFLAGS=00800000                                                   
  LUWID=                                    TID=             GTID=     
                                                                       
  FORMATID=             (decimal)          (hexadecimal)               
  GTRID=                                                               
                                                                       
  BQUAL=                                                               
                                                                       
  RMNAME=CSQ.RRSATF.IBM.MQV1              ROLE=Participant             
    FLAGS=10001000 PROTOCOL=PresumeAbort                               
    StateCheck EXIT RC=Uncalled                                        
    Prepare    EXIT RC=00000000                                        
    DistSp     EXIT RC=Uncalled                                        
    Commit     EXIT RC=00000010                            
    Backout    EXIT RC=Uncalled                            
    EndUr      EXIT RC=Uncalled                            
    ExitFailed EXIT RC=Uncalled                            
    Completion EXIT RC=Uncalled                            
    OnlyAgent  EXIT RC=Uncalled                            
  RMNAME=DSN.RRSATF.IBM.D7V1              ROLE=Participant 
    FLAGS=10001000 PROTOCOL=PresumeAbort                   
    StateCheck EXIT RC=Uncalled                            
    Prepare    EXIT RC=00000000                            
    DistSp     EXIT RC=Uncalled                            
    Commit     EXIT RC=00000010                            
    Backout    EXIT RC=Uncalled                            

 

 

 

134 Systems Programmer’s Guide to RRS



 

    EndUr      EXIT RC=Uncalled                            
    ExitFailed EXIT RC=Uncalled                            
    Completion EXIT RC=Uncalled                            
    OnlyAgent  EXIT RC=Uncalled

Example 12-2 shows that the UR has been successfully committed. RRS has called the 
Prepare and Commit exits for both MQ and DB2. The return code of x’10’ from the Commit 
exit signifies ATRX_FORGET, the commit has been successful and the RM has requested 
RRS to set the UR state to Forgotten.

 

 

 

Chapter 12. WebSphere MQ for z/OS 135



 

 

 

 

136 Systems Programmer’s Guide to RRS



 

Chapter 13. APPC/MVS

In this chapter, we discuss how APPC/MVS in z/OS V1.4 uses RRS. 

This chapter covers the following topics:

� “APPC/MVS RRS requirements” on page 138

� “APPC/MVS application restart and recovery with RRS” on page 139

� “APPC/MVS sample scenario with RRS” on page 140

� Restart and recovery issues

13
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 137



 

13.1  APPC/MVS RRS requirements
Advanced Program-to-Program Communication (APPC) is an implementation of the Systems 
Network Architecture (SNA) LU 6.2 protocol on a given system. APPC allows 
program-to-program communication within or between systems using SNA as the underlying 
communication protocol. 

APPC/MVS is the IBM implementation of APPC on the z/OS platform. APPC/MVS uses the 
underlying LU 6.2 support provided by VTAM (the IBM implementation of SNA on z/OS), and 
extends it to provide full APPC support. In particular, it provides the transactional services 
discussed in the opening section of this chapter. 

Note: Do not confuse VTAM/APPC and APPC/MVS. 

� VTAM provides APPC support that may be used directly by programs on z/OS without any 
involvement by APPC/MVS. For example, CICS has supported APPC-attached clients 
since early releases using the LU 6.2 support in VTAM. CICS does not use APPC/MVS.

� APPC/MVS is a resource manager that manages conversations between transaction 
programs using SNA as the underlying communications protocol. APPC/MVS is used by a 
number of products on z/OS to provide APPC support. IMS/TM uses the APPC/MVS to 
provide APPC support for clients connections. WebSphere MQ also uses APPC/MVS to 
provide support for APPC connections.

There are three levels of commit protocol defined in the LU 6.2 architecture and implemented 
in APPC/MVS:

SYNCLEVEL=NONE There is no coordination between the partners through automatic 
APPC flows.

SYNCLEVEL=CONFIRM DEALLOC causes confirmation-of-receipt flows.

SYNCLEVEL=SYNCPT This provides protected conversations. A protected conversation 
links separate pieces of a distributed application into a single 
transaction. All resource managers participating in the protected 
conversation either commit or back out together. This support 
requires RRS to be active.

We are interested in protected conversations. To identify a conversation as protected, the 
transaction programs (TP) allocate the conversations with a synchronization level of syncpt. 
When one of the TPs is ready to commit or back out its changes for a particular unit of work, 
the TP issues either the SRRCMIT or SRRBACK callable service to begin a syncpoint 
operation. During this operation, the local and partner LUs work with system syncpoint 
managers to coordinate the changes; RRS is the system syncpoint manager for APPC/MVS 
LUs. 

As discussed in 2.1, “Introduction to two-phase commit” on page 10, RRS is an exit manager. 
It performs its functions by driving exits provided by a resource manager in response to 
certain events. When APPC/MVS registers LUs as resource managers, it sets its exits to 
communicate with partner LUs to pass on PREPARE, COMMIT, or ROLLBACK requests. 
APPC/MVS on the partner LU will communicate with RRS on the local system to instruct it to 
commit or roll back units of work.

In these scenarios, APPC/MVS can act as an RRS communications resource manager. 
APPC/MVS will take on an RRS distributed server resource manager (DSRM) role to allow it 
act as a part of a distributed two-phase commit. Refer to Chapter 3, “Distributed RRS” on 
page 23, for a discussion of RRS distributed two-phase commit support.

 

 

 

138 Systems Programmer’s Guide to RRS



 

13.1.1  Transaction flow using APPC/MVS protected conversations
An example of transaction flow is provided in the discussion of the peer-to peer CRM model in 
3.1.1, “RRS distributed syncpoint support” on page 25. 

13.1.2  APPC/MVS system requirements for protected conversations
RRS must be enabled on all z/OS systems that are participating in the distributed transaction. 
Refer to Chapter 4, “Implementing RRS” on page 31, for details on implementing RRS.

APPC/MVS requires the partner LU to be parallel session-capable. The APPC/MVS LU must 
have its VTAM APPL definition with the SYNCLVL parameter set to SYNCPT, and the 
ATNLOSS parameter set to ALL.

APPC/MVS requires its own system logger log stream named ATBAPPC.LU.LOGNAMES. 
This log is used to hold the names of local and partner LUs and the negotiated syncpoint 
capabilities for all protected conversations. This information must be available to allow for 
restart and recovery processing after a failure. APPC/MVS supports DASD-only log streams, 
but in a Parallel Sysplex environment, the APPC/MVS log stream should be defined in the 
Coupling Facility if more than one system processes protected conversations.

For a detailed discussion about this topic, see “Using APPC/MVS Protected Conversations 
Support” in OS/390 MVS Planning: APPC/MVS Management, GC28-1807.

13.1.3  Managing APPC/MVS resources for protected conversations
A number of new APPC/MVS commands allow you to display information about protected 
conversations:

� The DISPLAY APPC,LU,ALL command contains the resource manager name for LUs that 
are registered with RRS, and indicates whether the LU is syncpoint-capable.

� The DISPLAY APPC,TP,ALL command contains the logical work unit identifier and indicates 
whether the conversation is protected and whether a syncpoint operation is in progress.

� The DISPLAY APPC,UR command displays each unit of recovery associated with a protected 
conversation. The command response contains the RRS URID that can be used in the 
RRS ISPF panels.

RRS also provides ISPF panels that allow you to display information about units of work. An 
APPC/MVS LU registered as a resource manager has a name in the form of 
ATB.netid.luname.IBM. You can use the RRS panels to display information for resource 
managers beginning with ATB* to display all APPC/MVS resource managers. Refer to 
Chapter 5, “RRS operations” on page 45 for examples of using the RRS ISPF panels to 
display information.

13.2  APPC/MVS application restart and recovery with RRS
On restart, APPC/MVS will process its logstream to determine all protected conversations 
that were ongoing before it terminated. It will then resync with RRS to determine the state of 
any URs in which it has expressed an interest.

During its restart processing, an APPC/MVS LU will resync with RRS and retrieve any 
outstanding URs from RRS. APPC/MVS calls the Begin_retstart_processing (ATRIBRS) RRS 
service to begin restart processing with RRS. RRS will return a list of URs in which 

 

 

 

Chapter 13. APPC/MVS 139



 

APPC/MVS has expressed an interest. APPC/MVS then retrieves information for each 
outstanding UR using the Retrieve_interest_data (ATRRID) RRS call.

Example 13-2 shows the APPC/MVS message that is issued for every LU that provides 
protected conversation support: 

Example 13-1   Sample APPC message issued for each Protected Conversation LU

AATB227I LOCAL LU luname IS log-status AS A RESOURCE MANAGER WITH RRS/MVS. LOCAL LOG: 
logname

In this message, log-status will be either COLD STARTING or WARM STARTING.

During the resynchronization phase, APPC/MVS will issue a number of messages indicating 
its process and any errors that have occurred. These messages all begin with ATB2*.

13.2.1  RRS failure while the APPC/MVS application is active
If RRS fails while an APPC/MVS application that uses protected conversations is active, then 
that LU will remain active but be unable to process any protected conversations. Any attempt 
to establish a new conversation will fail.

Example 13-2 shows the APPC/MVS error message ATB206I issued to indicate the LU 
cannot process protected conversations because RRS exits have been unset.

Example 13-2   APPC message after RRS failure

AATB208I LOGICAL UNIT luname FOR TRANSACTION SCHEDULER schedname WILL REJECT ALL
PROTECTED CONVERSATIONS. THE RESOURCE MANAGER EXITS HAVE BEEN UNSET. NOTIFICATION EXIT
REASON=rsncode.

Example 13-3 shows that RRS is available again; the APPC/MVS LU should be able to 
process protected conversations.

Example 13-3   APPC message after RRS becomes available

ATB201I LOGICAL UNIT luname FOR TRANSACTION SCHEDULER schedname NOW ACCEPTS PROTECTED 
CONVERSATIONS.

13.3  APPC/MVS sample scenario with RRS
Example 13-4 shows an extract from the RRS Archive log where we have an APPC/MVS 
application updated DB2 over a protected conversation.

Example 13-4   Extract from RRS Archive log

BROWSE    JOHNBTZ.ATR.REPORT                           Write failed with abend
   Command ===>                                                  Scroll ===> CSR
  ********************************* Top of Data **********************************
  RRS/MVS logstream BROWSE DETAIL  REPORT
 
  READING ATR.APPC.ARCHIVE           logstream
 
  N9A      2003/08/07 00:11:37.787861 BLOCKID=0000000000000001
    URID=B0DD95907E9A2C780000005601010000 JOBNAME=SP303    USERID=*
    SYNCPOINT=Commit  RETURN CODE=00000000
    START=2003/08/07 04:11:37.772092 COMPLETE=2003/08/07 04:11:37.787469
    EXITFLAGS=00800000
    LUWID=USIBMT6.MF1LUA07 958E44394D09 0001  TID=             GTID=
 

 

 

 

140 Systems Programmer’s Guide to RRS



 

    FORMATID=             (decimal)          (hexadecimal)
    GTRID=
 
    BQUAL=
    RMNAME=ATB.USIBMT6.MF2PROT3.IBM         ROLE=DSRM
      FLAGS=100E0000 PROTOCOL=PresumeNothing
      StateCheck EXIT RC=00000000
      Prepare    EXIT RC=00000000
      DistSp     EXIT RC=00000000
      Commit     EXIT RC=00000000
      Backout    EXIT RC=Uncalled
      EndUr      EXIT RC=00000000
      ExitFailed EXIT RC=Uncalled
      Completion EXIT RC=00000000
      OnlyAgent  EXIT RC=Uncalled
    RMNAME=DSN.RRSATF.IBM.RDF2              ROLE=Participant
      FLAGS=10000000 PROTOCOL=PresumeNothing
      StateCheck EXIT RC=Uncalled
      Prepare    EXIT RC=00000010
      DistSp     EXIT RC=Uncalled
      Commit     EXIT RC=Uncalled
      Backout    EXIT RC=Uncalled
      EndUr      EXIT RC=Uncalled
      ExitFailed EXIT RC=Uncalled
      Completion EXIT RC=Uncalled
      OnlyAgent  EXIT RC=Uncalled

In this example, we see that the APPC/MVS application (resource manager 
ATB.USIBMT6.MF2PROT3.IBM) has taken on the RRS DSRM row. The DISTSP exit has 
been enabled. In this case, DB2 has returned x’10’ from its prepare exit, meaning 
ATRX_FORGET. DB2 is telling RRS to remove its interest in this UR.

 

 

 

Chapter 13. APPC/MVS 141



 

 

 

 

142 Systems Programmer’s Guide to RRS



 

Chapter 14. DFSMStvs

In this chapter, we describe how DFSMStvs in z/OS V1.4 uses RRS. 

This chapter covers the following topics:

� DFSMStvs RRS requirements

� DFSMStvs features that exploit RRS

� RRS facilities that are exploited

� Restart and recovery issues

14
 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 143



 

14.1  DFSMtvs features that exploit RRS
DFSMStvs is an enhancement to VSAM RLS. It allows batch applications update access to 
recoverable data sets. As with RLS, DFSMStvs is a mode of access to data sets, not a new 
form of data set. VSAM RLS continues to provide both read integrity and write integrity for 
data sets using Coupling Facility-based locking and caching. 

DFSMStvs is an extension to VSAM RLS locking and therefore uses the same locking 
structure as other users of VSAM RLS. This allows applications using VSAM RLS and 
applications using DFSMStvs to read and write recoverable data sets concurrently.

DFSMStvs also supports the logging of updates to VSAM recoverable data sets in the same 
forward recovery log that CICS uses. If the VSAM file is opened in DFSMStvs mode, the 
following DFSMStvs functions will be enabled:

Resource locking This function is implemented in VSAM RLS. DFSMStvs 
uses the existing locking and deadlock detection 
functions of VSAM RLS unchanged to ensure 
compatibility between concurrent accesses in RLS mode 
and DFSMStvs mode. 

A new type of read access, consistent read explicit 
(CRE), is added by DFSMStvs for use in batch 
applications. It is the same as the repeatable read that 
only CICS transactions have in VSAM RLS. Since the 
same locking structure is used, when a lock is held in 
one mode (whether RLS or DFSMStvs), an application is 
unable to obtain the locked record in the other mode in 
an inconsistent state. 

For example, if a lock is held as shared in RLS mode, it 
could not be obtained as exclusive in DFSMStvs 
mode—this would be such an inconsistency. This 
serialization prevents VSAM RLS users and DFSMStvs 
users from attempting to modify the same record at the 
same time.

Resource recovery logging DFSMStvs enables forward recovery for VSAM files. This 
function enables a resource manager to use a redo log to 
keep a record of the changes made to recoverable 
resources by applications. In the VSAM RLS 
environment, redo logging was provided by CICS. CICS 
and DFSMStvs use the same redo log. The redo log is 
implemented in DFSMStvs by using the services 
provided by the system logger. The data provided in this 
redo log stream can be used by a forward recovery 
product, such as CICS/VR, at recovery time to 
reconstruct a VSAM file after a failure.

Two-phase commit and backout CICS already provides these functions and now 
DFSMStvs adds support for them at the file system level. 
Two-phase commit and backout in DFSMStvs are 
supported by RRS.

In the following sections we describe how DFSMStvs is involved in the two-phase commit 
protocol, and explain its interactions with RRS.

 

 

 

144 Systems Programmer’s Guide to RRS



 

14.1.1  Resource recovery participants
There are three parties involved in basic resource recovery protocols:

� The application program
� The resource manager(s)
� The syncpoint manager

In the following sections we discuss these entities in more detail. Note that for DFSMStvs, 
however, DFSMStvs itself is the resource manager and RRS acts as the syncpoint manager.

The application program
The application is the program that accesses protected resources, for example a banking 
transaction that requires money to be transferred from a savings account to a checking 
account. There are two separate operations that must occur to satisfy this transaction: money 
must be subtracted from the savings account, and an identical amount must be added to the 
checking account. From the bank’s point of view, it is important that the accounts never be left 
in a state where the transfer amount is in both accounts. From the customer’s point of view, it 
is important that the accounts never be left in a state where the transfer amount is in neither 
account.

After the individual operations have taken place, the application can take one of two actions to 
ensure that changes to the protected resources are synchronized. This is a sync point in the 
application. It can either:

� Invoke a commit service to make the change permanent

� Invoke a backout service to undo the changes and restore the protected resources to their 
previous stable state (also referred to as a rollback or abort)

Notice that only the application has sufficient information to determine when it is time to 
commit or to back out. The system must have a way of ensuring that once the application 
indicates commit or backout, the transaction either completes in its entirety or nothing at all 
changes.

The resource manager
The second participant in resource recovery is the resource manager. The resource manager 
is the program that provides interfaces through which applications manipulate protected 
resources. It is also responsible for carrying out resource-specific actions to commit changes. 
Resource managers can control either protected or unprotected resources. A resource 
manager that controls protected resources (often termed a protected resource manager) has 
the following characteristics:

� It provides an application programming interface (API) that applications use to manipulate 
resources.

� It logs changes to data before making the changes permanent.

� It logs the state of the unit of recovery.

� It reacts to invocations of the commit/backout services.

� It has failure recovery mechanisms that allow it to restore data to the state of its previous 
unit of recovery.

Unprotected resource managers generally do not log data changes or react to the 
commit/backout services. DFSMStvs runs as a protected resource manager.

 

 

 

Chapter 14. DFSMStvs 145



 

The syncpoint manager
The final participant in resource recovery is the syncpoint manager, which coordinates the 
commitment of multiple protected resources of potentially different resource types (for 
example, DB2 databases or VSAM data sets). The role of the syncpoint manager is to take a 
snapshot of the set of resource managers that the application is using prior to a commit. It 
also provides a protocol to ensure that the transaction is executed completely or not at all.

14.1.2  Commit flow with DFSMStvs
When an application program has completed the set of record updates that it considers to be 
an atomic unit, it invokes commit to make those changes permanent. During commit, the 
commit coordinator, RRS, invokes the commit exits of each of the interested parties (the 
resource managers, who are also known as commit participants).

During phase 1 of commit, the commit participants harden their changes and logs and 
determine if it is possible to commit. If all of the commit participants agree to commit, 
processing continues with phase 2 of commit.

The flow of actions for the commit process in two-phase commit is shown in Figure 14-1:

Figure 14-1   DFSMStvs commit flow

Following is the flow of actions for the commit process in two-phase commit:

1. The application program requests commit by invoking the RRS commit service.

2. RRS drives the prepare exit of each recoverable resource commit participant that has 
commit responsibility for this unit of recovery.

3. DFSMStvs ensures that all undo log records for the unit of recovery are hardened to the 
system log stream managed by the system logger. 

4. DFSMStvs ensures that all I/O is complete and that any modifications to recoverable data 
sets made by this unit of recovery are written to disk. This includes changes made using 
sequential, skip sequential, and direct note string position (NSP) requests. DFSMStvs 
issues an ENDREQ against all RPLs that hold position within VSAM RLS data sets for this 
unit of recovery. The ENDREQs change the status of the unit of recovery's exclusive 

Application RRS SMSVSAM IXGLOGR

10. notify commit

1. commit
2. prepare

3. undo log

9. log

7.8. vote Yes or No
5.6. redo log

4. write

11. commit log

12. lock release

13. commit complete

I/O

 

 

 

146 Systems Programmer’s Guide to RRS



 

record locks such that the unit of recovery may now access the records for backout using 
a different RPL.

5. DFSMStvs ensures that all redo log records for the unit of recovery are hardened to the 
forward recovery log stream managed by the system logger.

6. DFSMStvs does not write a log record showing phase 1 of commit processing for the unit 
of recovery has completed because such a log record would have no effect on DFSMStvs 
processing.

7. DFSMStvs determines if any errors occurred while processing the unit of recovery that 
make it ineligible for commit. If so, it votes no.

8. If there were no such errors, DFSMStvs votes yes.

9. When all participants have voted yes, RRS writes a log record to non-volatile storage 
showing the UR's status as in-commit.

10.RRS then drives the commit exit of each participant.

11.DFSMStvs creates a commit complete log record before it releases the locks for the unit of 
recovery, and writes the commit complete record to the system log.

12.DFSMStvs releases all the locks held by the unit of recovery.

13.DFSMStvs then returns commit complete to RRS.

14.1.3  Backout flow with DFSMStvs
When a unit of recovery backs out, the commit participants are responsible for backing out all 
changes to recoverable resources made by the unit of recovery. An exclusive lock is held for 
each record update, add, and delete performed by the unit of recovery to recoverable VSAM 
data sets. 

These locks are held with the unit of recovery ID (URID) of the owner. They inhibit other units 
of recovery from changing or reading with integrity (using either consistent read or consistent 
read explicit) the records. While these locks inhibit access to the records by other units of 
recovery, they do not inhibit access by the unit of recovery that is backing out. The commit 
participant accesses these records to perform the backout operations.

VSAM requests issued by the commit participant during the backout may return an error 
status. This can cause the backout to fail. The flow of control shown in Figure 14-2 assumes 
that there were no VSAM request errors during the backout. 

 

 

 

Chapter 14. DFSMStvs 147



 

Figure 14-2   DFSMStvs backout flow

The backout flow occurs as follows:

1. The application requests backout by invoking the RRS backout service, or RRS initiates 
backout as a result of abnormal termination of the unit of recovery.

2. RRS drives the backout exit of each recoverable resource commit participant that has 
commit responsibility for this unit of recovery.

3. DFSMStvs ensures that all undo log records for the unit of recovery are hardened to the 
system log stream managed by the system logger.

4. DFSMStvs ensures that all I/O is complete and that any modifications to recoverable data 
sets made by this unit of recovery are written to DASD. This includes changes made using 
sequential, skip sequential, and direct NSP (note string position) requests. DFSMStvs 
issues an ENDREQ against all RPLs that hold position within VSAM RLS data sets for this 
unit of recovery. The ENDREQs change the status of the unit of recovery’s exclusive 
record locks so that the unit of recovery may now access the records for backout using a 
different RPL.

5. DFSMStvs reads its system log to determine the changes that must be backed out. It 
undoes any updates, deletes and adds (except to an ESDS).

6. DFSMStvs writes before image records to the redo log (if applicable).

7. DFSMStvs creates a backout complete log record before it releases the locks for the unit 
of recovery and writes the backout complete record to the system log.

8. DFSMStvs releases all of the locks held by the unit of recovery.

9. RRS writes a log record indicating that the unit of recovery has been backed out.

14.1.4  Handling of undo records when in-doubt with DFSMStvs
A unit of recovery can become in-doubt during the period between a yes response from the 
resource managers to an RRS request for prepare and the time RRS invokes commit.

Application RRS SMSVSAM IXGLOGR

1. backout
2. prepare

3. undo log

9. log

6.redo log

5. read undo log
    write

4. write

7. backout log

8. lock release

I/O

I/O

 

 

 

148 Systems Programmer’s Guide to RRS



 

Once a commit is issued and all participants in the commit respond positively to the prepare 
request, the following occurs:

� The unit of recovery on the system that issued the commit becomes In_Commit.

� The unit of recovery on other systems becomes in-doubt until the distributed syncpoint 
resource manager receives the prepare response from the system that initiated the 
commit.

14.1.5  Handling long-running units of recovery with DFSMStvs
A long-running unit of recovery is one that makes a request which causes the unit of 
recovery to become in-flight and then does not issue a syncpoint request (commit or backout) 
for a long period of time. This can cause the unit of recovery to hold a large number of locks, 
as well as to write a large number of log records.

The undo log records for in-doubt and long-running units of recovery cause a problem for 
management of the space within backout log streams. Ideally, the undo records in a backout 
log stream have a short life cycle. This enables the deletion of obsolete entries from the log 
stream, thus avoiding offload of the log data by the system logger from the Coupling Facility to 
disk data sets. Units of recovery that do not reach a syncpoint within a short period interfere 
with the deletion of obsolete entries.

Two possible conditions could occur when attempting to write records to a log stream using 
the z/OS System Logger if too much old data is left in the log:

� The z/OS System Logger could return a return code and reason code indicating that the 
Coupling Facility storage limit has been reached. When this occurs, the z/OS System 
Logger begins offloading data to DASD. DFSMStvs cannot write any further information to 
its log streams until the problem has been resolved. DFSMStvs periodically retries the 
request to write data until the request finally succeeds.

� The z/OS System Logger can return a return code and reason code indicating that the 
staging data set storage limit has been reached. Again, when this occurs, the z/OS 
System Logger begins offloading data to disk. DFSMStvs cannot write any further 
information to its log streams until the problem has been resolved. 

DFSMStvs uses a special log stream called the secondary system log stream (or shunt log) 
as a place for keeping the undo records of in-doubt and long-running units of recovery. 
The undo records are first recorded in the primary system log stream. Later, when the unit 
of recovery's status changes to in-doubt or DFSMStvs determines that this is a 
long-running unit of recovery, its previously logged undo records are moved from the 
primary to the secondary system log stream. This frees the space in the primary stream.

DFSMStvs also uses the secondary log for units of recovery that it is unable to complete 
(for example due to an I/O error or unavailability of a resource, such as a volume or a 
cache) and for long-running units of recovery.

14.2  TVS restart and recovery with RRS
DFSMStvs depends upon RRS to provide transactional support to its unit of work. In the 
following sections, we describe how these subsystems affect each other in restart/recovery 
situations.

 

 

 

Chapter 14. DFSMStvs 149



 

14.2.1  RRS failure
If RRS fails, then DFSMStvs stops accepting requests. DFSMStvs requires RRS to provide its 
transactional support and cannot function without it. RRS must be restarted on the image 
before DFSMStvs processes new requests on this image. As soon as RRS is restarted, 
DFSMStvs reconnects to the subsystem. Example 14-1 is a syslog sample showing the 
interaction between the two subsystems during an RRS failure.

Example 14-1   Syslog of RRS failure

ASA2960I RRS SUBSYSTEM FUNCTIONS DISABLED. COMPONENT ID=SCRRS         
ATR167I RRS RESMGR PROCESSING COMPLETED.                              
IGW471I DFSMS VSAM RLS  REQUEST TO DISABLE
TRANSACTIONAL VSAM  INSTANCE  IGWTV002 IS ACCEPTED.                   
DISABLE REASON: TRANSACTIONAL VSAM DETECTED RRS IS UNAVAILABLE                       
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                      

IS WAITING FOR A RESPONSE                                             
FROM TRANSACTIONAL VSAM:  IGWTV002                                   
COMMAND REQUESTED:                                                    
 DISABLE TRANSACTIONAL VSAM:  IGWTV002                                

IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                      
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM:  IGWTV002          
COMMAND REQUESTED:  DISCONNECT FROM LOGSTREAM:  #@$C.CICSVR.LGOFLOGS  
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                      
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM:  IGWTV002          
COMMAND REQUESTED:  DISABLE LOGSTREAM:  IGWTV002.IGWLOG.SYSLOG        
IGW474I DFSMS VSAM RLS IS DISCONNECTING FROM 
TRANSACTIONAL VSAM  LOGSTREAM IGWTV002.IGWLOG.SYSLOG                  
SYSTEM NAME:              #@$2 
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                         
IGW474I DFSMS VSAM RLS IS DISCONNECTING FROM 
TRANSACTIONAL VSAM  LOGSTREAM IGWTV002.IGWSHUNT.SHUNTLOG            
SYSTEM NAME:              #@$2                                      
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                         
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
HAS BEEN POSTED BY   TRANSACTIONAL VSAM:  IGWTV002                  
COMMAND REQUESTED:  DISABLE LOGSTREAM:  IGWTV002.IGWLOG.SYSLOG      
IGW474I DFSMS VSAM RLS IS DISCONNECTING FROM 
TRANSACTIONAL VSAM  LOGSTREAM #@$C.CICSVR.LGOFLOGS                  
SYSTEM NAME:              #@$2                                      
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                         
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
HAS BEEN POSTED BY   TRANSACTIONAL VSAM:  IGWTV002                  
COMMAND REQUESTED:  DISABLE LOGSTREAM:  IGWTV002.IGWSHUNT.SHUNTLOG  
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
HAS BEEN POSTED BY   TRANSACTIONAL VSAM:  IGWTV002                  
COMMAND REQUESTED: DISABLE TRANSACTIONAL VSAM: IGWTV002                               
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
HAS CALLED THE DFSMS COMMAND COMPLETE PROCESSOR 
COMMAND REQUESTED: DISABLE TRANSACTIONAL VSAM:  IGWTV002                                 
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                       
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM:  IGWTV002           
COMMAND REQUESTED:  DISABLE LOGSTREAM:  IGWTV002.IGWSHUNT.SHUNTLOG     
IGW471I DFSMS VSAM RLS REQUEST TO DISABLE 
TRANSACTIONAL VSAM INSTANCE IGWTV002 IS COMPLETED. 
TRANSACTIONAL VSAM INSTANCE IGWTV002 IS NOW DISABLED.                  
TRANSACTIONAL VSAM LOGSTREAM IGWTV002.IGWLOG.SYSLOG IS NOW DISABLED                                                               
TRANSACTIONAL VSAM LOGSTREAM IGWTV002.IGWSHUNT.SHUNTLOG IS NOW DISABLED                                                               
ATR222I LOG TAKEOVER FOR SYSTEM #@$2 HAS COMPLETED SUCCESSFULLY.    

 

 

 

150 Systems Programmer’s Guide to RRS



 

D SMS,TRANVSAM                                                         
IGW800I 10.47.37 DISPLAY SMS,TRANSACTIONAL VSAM                        
                                                                       
DISPLAY SMS,TRANSACTIONAL VSAM - SERVER STATUS                         
 System   TVSNAME  State   Rrs    #Urs     Start     AKP    QtimeOut   
 -------- -------- ------ ----- -------- --------- -------- --------   
 #@$2     IGWTV002 DISED  UNREG        0 WARM/COLD     1000      300   
                                                                       
DISPLAY SMS,TRANSACTIONAL VSAM - LOGSTREAM STATUS                   
 LogStreamName              State      Type       Connect Status    
 -------------------------- ---------- ---------- --------------    
 IGWTV002.IGWLOG.SYSLOG     Disabled   UnDoLog    DisConnected      
 IGWTV002.IGWSHUNT.SHUNTLOG Disabled   ShuntLog   DisConnected      
 #@$C.CICSVR.LGOFLOGS       Enabled    LogOfLogs  DisConnected   

S RRS 

ATR221I RRS IS JOINING RRS GROUP #@$#PLEX ON SYSTEM #@$2           
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_RMDATA_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                       
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                       
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_MAINUR_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                       
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                       
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_DELAYEDUR_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                       
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                       
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_RESTART_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                       
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                       
IXL014I IXLCONN REQUEST FOR STRUCTURE RRS_ARCHIVE_1 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                       
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                       
IGW472I DFSMS VSAM RLS REQUEST TO ENABLE 
TRANSACTIONAL VSAM INSTANCE IGWTV002 ACCEPTED.                      
ENABLE REASON: TRANSACTIONAL VSAM DETECTED RRS IS AVAILABLE         
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM:  IGWTV002                                 
COMMAND REQUESTED: ENABLE  TRANSACTIONAL VSAM:  IGWTV002                              
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM:  IGWTV002        
COMMAND REQUESTED:  ENABLE  LOGSTREAM:  IGWTV002.IGWLOG.SYSLOG      
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                    
IS WAITING FOR A RESPONSE FROM TRANSACTIONAL VSAM:  IGWTV002        
COMMAND REQUESTED:  ENABLE  LOGSTREAM:  IGWTV002.IGWSHUNT.SHUNTLOG  
ASA2011I RRS INITIALIZATION COMPLETE. COMPONENT ID=SCRRS            
021 IGW879A TRANSACTIONAL VSAM COLD START REQUESTED  REPLY 'COLD', 'WARM', OR 'DISABLE'                                                
R 21,WARM                                                           
IEE600I REPLY TO 021 IS;WARM                                        
IGW860I TRANSACTIONAL VSAM HAS SUCCESSFULLY REGISTERED WITH RLS     
IGW888I TRANSACTIONAL VSAM PERMITNONRLSUPDATE EXIT NOT LOADED FOR 
INSTANCE IGWTV002 ON SYSTEM #@$2                             
IGW848I 12292003 10.48.52 SYSTEM UNDO LOG IGWTV002.IGWLOG.SYSLOG INITIALIZATION HAS STARTED                                              
IXL014I IXLCONN REQUEST FOR STRUCTURE LOG_IGWLOG_001 WAS SUCCESSFUL. 
JOBNAME: IXGLOGR ASID: 0014                            
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL04                            
IGW474I DFSMS VSAM RLS IS CONNECTING TO 
TRANSACTIONAL VSAM  LOGSTREAM IGWTV002.IGWLOG.SYSLOG                    
SYSTEM NAME:              #@$2                                          
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                             

 

 

 

Chapter 14. DFSMStvs 151



 

IGW848I 12292003 10.48.53 SYSTEM UNDO LOG IGWTV002.IGWLOG.SYSLOG 
INITIALIZATION HAS ENDED                                                
IGW848I 12292003 10.48.53 SYSTEM SHUNT LOG IGWTV002.IGWSHUNT.SHUNTLOG 
INITIALIZATION HAS STARTED                                              
IXL014I IXLCONN REQUEST FOR STRUCTURE LOG_IGWSHUNT_001 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                            
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                            
IGW474I DFSMS VSAM RLS IS CONNECTING TO 
TRANSACTIONAL VSAM  LOGSTREAM IGWTV002.IGWSHUNT.SHUNTLOG                
SYSTEM NAME:              #@$2                                          
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                             
IGW848I 12292003 10.48.55 SYSTEM SHUNT LOG IGWTV002.IGWSHUNT.SHUNTLOG 
INITIALIZATION HAS ENDED 
IGW848I 12292003 10.48.55 LOG OF LOGS #@$C.CICSVR.LGOFLOGS 
INITIALIZATION HAS STARTED                                           
IXL014I IXLCONN REQUEST FOR STRUCTURE CIC_GENERAL_001 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                         
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL03                         
IGW474I DFSMS VSAM RLS IS CONNECTING TO 
TRANSACTIONAL VSAM  LOGSTREAM #@$C.CICSVR.LGOFLOGS                   
SYSTEM NAME:              #@$2                                       
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                          
IGW848I 12292003 10.48.56 LOG OF LOGS #@$C.CICSVR.LGOFLOGS 
INITIALIZATION HAS ENDED                                             
IGW865I TRANSACTIONAL VSAM INITIALIZATION IS COMPLETE.               
IGW471I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                     
HAS BEEN POSTED BY   TRANSACTIONAL VSAM:  IGWTV002                   
COMMAND REQUESTED: ENABLE  TRANSACTIONAL VSAM: IGWTV002                                
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                     
HAS BEEN POSTED BY   TRANSACTIONAL VSAM:  IGWTV002                   
COMMAND REQUESTED:  ENABLE  LOGSTREAM:  IGWTV002.IGWLOG.SYSLOG 
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                        
HAS BEEN POSTED BY   TRANSACTIONAL VSAM:  IGWTV002                      
COMMAND REQUESTED:  ENABLE  LOGSTREAM:  IGWTV002.IGWSHUNT.SHUNTLOG      
IGW473I DFSMS VSAM RLS COMMAND PROCESSOR ON SYSTEM:  #@$2                                                        
HAS CALLED THE DFSMS COMMAND COMPLETE PROCESSOR                         
COMMAND REQUESTED:  ENABLE  LOGSTREAM:  IGWTV002.IGWSHUNT.SHUNTLOG      
IGW886I 0 RESTART TASKS WILL BE PROCESSED DURING TRANSACTIONAL VSAM RESTART PROCESSING                                                      
IGW866I TRANSACTIONAL VSAM RESTART PROCESSING IS COMPLETE.              
IGW472I DFSMS VSAM RLS  REQUEST TO ENABLE 
TRANSACTIONAL VSAM INSTANCE IGWTV002 IS COMPLETED.                      
TRANSACTIONAL VSAM INSTANCE IGWTV002 IS NOW ENABLED.                    
TRANSACTIONAL VSAM LOGSTREAM IGWTV002.IGWLOG.SYSLOG IS NOW ENABLED.                                                                
TRANSACTIONAL VSAM LOGSTREAM IGWTV002.IGWSHUNT.SHUNTLOG IS NOW ENABLED.                                                                
TRANSACTIONAL VSAM IGWTV002 WILL NOW ACCEPT NEW WORK                    
IGW467I DFSMS TVSNAME PARMLIB VALUE SET DURING 
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: #@$2                    
TVSNAME: IGWTV002                                                       
CURRENT VALUE: ENA-ED  1                                                
IGW467I DFSMS TRANSACTIONAL VSAM UNDO LOG PARMLIB VALUE SET DURING 
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: #@$2 
UNDO LOGSTREAM NAME:  IGWTV002.IGWLOG.SYSLOG                          
CURRENT VALUE: ENA-ED  1                                              
IGW467I DFSMS TRANSACTIONAL VSAM SHUNT LOG PARMLIB VALUE SET DURING 
SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: #@$2                  
SHUNT LOGSTREAM NAME:  IGWTV002.IGWSHUNT.SHUNTLOG                     
CURRENT VALUE: ENA-ED  1 

Note: In our sample, DFSMStvs was interacting with the operator at startup time since COLD 
is specified in our IGDSMS parmlib member and the UnDo log stream is not empty. When this 

 

 

 

152 Systems Programmer’s Guide to RRS



 

situation occurs, DFSMStvs verifies with the operator whether it should complete the 
initialization in COLD start or WARM start.

14.2.2  DFSMStvs restart
During restart processing, DFSMStvs requests a list of the units of recovery for which VSAM 
has retained locks. DFSMStvs releases retained locks for any units of recovery for which its 
undo (system) log contains no backout log records.

Restart processing of a failed instance of DFSMStvs includes backout of changes to VSAM 
recoverable data sets. These changes were made by in-flight (active and not yet committed) 
units of recovery that were forced to terminate when the instance of DFSMStvs failed.

Restart processing resolves any in-doubt units of recovery; however, DFSMStvs cannot take 
action on in-doubt units of recovery until it is told to do so by RRS. Therefore, restart 
processing may complete but leave some outstanding in-doubt units of recovery that are 
waiting for RRS to determine whether they should be committed or backed out.

When DFSMStvs completes backout processing for the unit of recovery required for restart, it 
releases all active and retained locks held by the unit of recovery with the exception of any 
locks that are marked for retention due to errors encountered during the attempted backout. 
Any locks that are marked for retention become retained locks.

14.2.3  DFSMStvs peer restart
If the SMSVSAM address space fails, all in-flight units of recovery that are using the 
DFSMStvs instance at the time of its failure are backed out during the restart process of the 
failed SMSVSAM. This happens automatically.

However, in the case of a z/OS system failure, restart can take a comparatively long time, and 
the process is not automatic. As a result, in-flight units of recovery can remain for a long time. 
To prevent this situation, DFSMStvs provides a function known as peer recovery.

When peer recovery occurs, another SMSVSAM instance in the sysplex (a peer) performs the 
backout for in-flight units of recovery that were being processed by the SMSVSAM address 
space that failed. Peer recovery starts automatically if there is an ARM policy (created using 
IXCMIAPU) that includes DFSMStvs and any other resource managers that might be involved 
in a unit of recovery in a restart group.

If you do not use ARM, you should change your operational procedures to issue the following 
command in another system as soon as possible in case of a system failure:

VARY SMS,TRANSVSAM(tvsname),PEERRECOVERY,ACTIVE

Example 14-2 is a sample of the ARM definitions to activate peer recovery. In our case, we 
want to activate peer recovery on system #@$3 because it is the only other system in our 
sysplex that has the right software level for DFSMStvs—and DFSMStvs is the only element in 
the restart group since our workload is only batch.

Example 14-2   ARM policy definitions

DEFINE POLICY NAME(ARM01)                                  
  RESTART_GROUP(TVS)                                        
   TARGET_SYSTEM(#@$3)                                      
    ELEMENT(IGWTV002)                                       
     RESTART_ATTEMPTS(3,120)                                
     RESTART_TIMEOUT(60)                                    
     READY_TIMEOUT(900)                                     

 

 

 

Chapter 14. DFSMStvs 153



 

     TERMTYPE(ALLTERM)                                      
     RESTART_METHOD(SYSTERM,STC,                            
            'VARY SMS,TRANVSAM(002),PEERRECOVERY,ACTIVE') 

14.2.4  Operator commands
There are some changes to operator commands for DFSMStvs. In the following sections, we 
describe the changes to the SMS command and show sample output from these commands.

Display SMS
The new options for the Display SMS command shown in Example 14-3 are used to capture 
information about the DFSMStvs environment. Specifically, you can display the following 
resources or verify their status:

� Check that a particular unit of recovery (UR) is currently active within the sysplex.

� Verify all units of recovery currently active on the system on which the command was 
issued and on whose behalf DFSMStvs has performed any work.

� Discover entries currently contained in the shunt logs of the systems in the sysplex. 

� Display information about log streams that DFSMStvs is using on one of the systems in 
the sysplex. If ALL is specified, information is displayed about all log streams in use on the 
system on which the command is issued. The output includes:

– Status of the log stream (failed or available)

– Type of log (undo, shunt, forward recovery, or log of logs)

– Job name and URID of the oldest unit of recovery using the log

– List of all DFSMStvs instances using the log

� Understand which configuration options are in use for this instance of DFSMStvs.

Example 14-3   New options for the DISPLAY SMS command

DISPLAY SMS ,TRANVSAM {,ALL}

,JOB(jobname)

,URID(urid|ALL)

,SHUNTED, {SPHERE(sphere)|

 URID(urid|ALL)}

,LOG(logstream| ALL)

,DSNAME(dsn)

 ,OPTIONS

Vary SMS
As shown in Example 14-4, you can use the VARY SMS command to change the status of the 
following resources:

� The VARY SMS,TRANVSAM command is used to enable, quiesce, or disable the 
specified DFSMStvs instance, or all DFSMStvs instances in the sysplex. It is routed to all 
systems in the sysplex and affects either all DFSMStvs instances, or the DFSMStvs 
instance with the name specified.

 

 

 

154 Systems Programmer’s Guide to RRS



 

� The VARY SMS,LOG command is used to enable, quiesce, or disable DFSMStvs access 
to the specified log stream. Quiescing or disabling the DFSMStvs undo or shunt log 
stream is equivalent to quiescing or disabling DFSMStvs processing.

� The VARY SMS,SMSVSAM,SPHERE command is used to quiesce or unquiesce a data 
set for RLS or DFSMStvs access. The VARY SMS,SMSVSAM,SPHERE(sphere) 
command was provided in RLS to support unquiescing a data set when CICS was 
unavailable. This clears the VSAM-quiesced state for the specified sphere. This command 
is being extended to support quiescing a data set.

� The VARY SMS,TRANVSAM(tvsname),PEERRECOVERY command is used to start or 
stop peer recovery processing for a failed instance of DFSMStvs. It applies only to the 
system on which it is issued. That system will then be responsible for performing all peer 
recovery processing for the failed DFSMStvs instance.

Example 14-4   New options for the VARY SMS command

VARY SMS ,TRANVSAM(tvsname|ALL), {QUIESCE | Q}

 {DISABLE | D}

 {ENABLE | E}

,LOG(logstream), {QUIESCE | Q}

 {DISABLE | D}

 {ENABLE | E}

SMSVSAM,SPHERE(sphere), {QUIESCE | Q}

 {ENABLE | E}

,TRANVSAM(tvsname),  {ACTIVE |

PEERRECOVERY,   ACTIVEFORCE |

 INACTIVE}

SETSMS
The SETSMS command can be used, as shown in Example 14-5 on page 156, to change 
some of the DFSMStvs configuration variables. For example:

� AKP - the activity keypoint trigger value, which is the number of logging operations 
between the taking of keypoints. Valid values are 200 to 65535. The default is 1000.

� The QTIMEOUT that specifies the quiesce exit timeout value in seconds. This is the 
amount of time the DFSMStvs quiesce exit allows to elapse before it concludes that a 
quiesce cannot be completed successfully. Changing the value of QTIMEOUT affects only 
those quiesces that are submitted after the change is made. It has no effect on quiesces 
that are already in progress. Valid values are 60 to 3600. The default is 300.

� MAXLOCKS - this parameter specifies two values:

– The maximum number of unique lock requests that a single unit of recovery may make 
before warning message IGW859I is issued to the system console and message 
IGW10074I is issued to the job log

– An increment value - the warning messages will be issued every time the number of 
unique lock requests over and above the maximum increases by a multiple of the 
increment

� The RLSTMOUT parameter specifies the maximum time in seconds that a VSAM RLS or 
DFSMStvs request is to wait for a required lock before the request is assumed to be in 
deadlock and aborted. RLSTMOUT is specified as a value in seconds in the range of 0 to 

 

 

 

Chapter 14. DFSMStvs 155



 

9999. The default is 0 and means that the VSAM RLS or DFSMStvs request has no 
timeout value; the request will wait for as long as necessary to obtain a lock.

Example 14-5   SETSMS sample command

SETSMS AKP(nnn | 1000)

QTIMEOUT(nnn | 300)

MAXLOCKS(max | 0, incr | 0)

RLSTMOUT(nnn|0)

SHCDS
The SHCDS IDCAMS command has been enhanced to be able to retrieve DFSMStvs 
information that is useful to understand the status of a file, to perform diagnosis and recovery 
tasks in a failure scenario. Example 14-6 is a sample of the updated SHCDS command for 
DFSMStvs.

Example 14-6   Updated SHCDS IDCAMS command for DFSMStvs

SHCDS LISTDS(base-cluster) {JOBS}

LISTSHUNTED SPHERE(base-cluster)

LISTSHUNTED URID(urid|ALL)

RETRY SPHERE(base-cluster)

RETRY URID(urid)

PURGE SPHERE(base-cluster)

 PURGE URID(urid)

For example:

� The RETRY and PURGE subcommands are used to take action on work that DFSMStvs 
shunted. Units of recovery are shunted when DFSMStvs is unable to finish processing 
them (for example, due to an I/O error). As long as a shunted log entry exists, the locks 
associated with that entry are retained. You can take action either on a particular unit of 
recovery, or on all records in the shunt log that apply to a particular data set.

� The LISTDS subcommand has been modified to accept a new, optional JOBS keyword. 
When this keyword is specified, this command also returns a list of the jobs currently 
accessing the data set in DFSMStvs mode.

� The LISTSHUNTED subcommand lists information about work that was shunted due to an 
inability to complete a syncpoint (commit or backout) for a given data set or UR, or for all 
shunted URs when the ALL keyword is specified.

The output includes:

– The unit of recovery identifier(s)

– The data set name(s)

– The job with which the unit of recovery was associated

– The step within the job with which the unit of recovery was associated

– The disposition of the unit of recovery (whether it will be committed or backed out if it is 
retried)

 

 

 

156 Systems Programmer’s Guide to RRS



 

14.3  DFSMStvs examples
In our environment, we had DFSMStvs active on one of our systems. The name of the 
subsystem was IGWTV002 and it was active on system #@$2. Issuing the D SMS, TRANVSAM 
command, we can see the current status of the subsystem and the log streams used by this 
instance of DFSMStvs; see Figure 14-3.

Figure 14-3   Display DFSMStvs status

At this point, you can verify that DFSMtvs registered with RRS as a resource manager by 
looking through the RRS panel. In the main menu of the RRS panels, selecting the 
Display/Update RRS related Resource Manager information option should display the 
DFSMStvs subsystem listed as a resource manager, as shown in Figure 14-4. 

This figure shows multiple entries for the IGWTV002 subsystem with the RESET status; these 
are the old entries for the subsystem. The entry you are interested in has a status of Run, and 
it represents the current instance of DFSMStvs running on #@$2.

Figure 14-4   Display Resource Manager status

After verifying the subsystem was active we started the workload, which consisted of a set of 
batch jobs accessing VSAM files. The programs associated with these batch jobs were 
updated to use the RRS application interface through the SSRCMIT and SSRBACK calls for 
commit and backout, respectively.

Note: You can monitor the effect of these interactions on the RRS panels while the workload 
is running, as follows: 

� From the RRS main menu, under the option Display/Update RRS related Work Manager 
information you can see the multiple batch jobs that have URIDs and express interest in 
work requests.

� From the RRS main menu, under the option Display/Update RRS Unit of Recovery 
information, you can see the current in-flight URID.

Next, we introduced a failure in order to see what kind of information can be retrieved from the 
RRS environment that can help recover a DFSMStvs environment. We caused DFSMStvs to 
fail on #@$2 while the workload was running.

It is up to the application program to deal with the DFSMStvs failure and return code; 
normally we would expect a batch job to warn about the error with a WTO on the log, then 
either loop waiting for DFSMStvs to come back or, more likely, to end. 

 

 

 

Chapter 14. DFSMStvs 157



 

On the RRA panel Display/Update RRS related Resource Manager information, the status of 
the resource manager changed from Run to Reset.

On the RRA panel Viewing the Display/Update RRS Unit of Recovery information option, 
shown in Figure 14-5, we found 8 URIDs that are in-flight and have not committed. 

Figure 14-5   Display URID

Figure 14-6 on page 159 shows the detailed report of the URID from the previous panel. A 
portion of the Work Manager Name (in this case, TVSV07C) reported in this panel 
corresponds to the batch job name and address space number that is associated with the 
in-flight URID that needs to be recovered once that DFSMStvs is restarted. 

The batch jobs listed in this panel are the only ones that have a unit of recovery that will be 
backed out once that DFSMStvs restarts. The other jobs belonging to our workload are not 
processing new DFSMStvs requests, but at the same time they do not have any pending unit 
of recovery that needs to be cleared up at DFSMStvs restart time. 

So, for example, if you know that DFSMStvs will not be able to restart for a long time and you 
need to run those jobs that do not have pending URIDs, you can restart them on other 
DFSMStvs instances. The jobs with in-flight URID could theoretically be restarted from the 
last committed record, but they will not be able to process the record(s) associated with the 
in-flight URs till DFSMStvs perform the backout. The records associated with the in-flight URs 
should be marked with retained locks to prevent further changes.

Note: If the instance on #@$2 system does not come back in a short time, consider 
performing a peer recovery restart of the DFSMStvs 002 instance on a different system to 
perform the backout on these 8 URIDs, then restart these jobs from their last committed 
syncpoint. Batch jobs that access VSAM files through DFSMStvs must be able to restart from 
the last syncpoint. For further details on job restartability, refer to DFSMStvs Application 
Migration Guide, SG24-6072.

 

 

 

158 Systems Programmer’s Guide to RRS



 

Figure 14-6   URID detailed report

To easily find the batch jobs that have any in-flight URID, use the RRS panel option 
Display/Update RRS related Work Manager information. Figure 14-7 shows the list of batch 
jobs that have in-flight URIDs that will require DFSMStvs to go through a backout process. 

Figure 14-7   Work Managers Display

From this panel the UR associated with a specific batch job can be listed, as shown 
Figure 14-8. 

(For more detailed information, use option “v”; this will display the information shown in 
Figure 14-6.)

Figure 14-8   Work Manager associated URID

 

 

 

Chapter 14. DFSMStvs 159



 

Using the IDCAMS SHCDS LISTDS command as illustrated in Figure 14-9 can show which 
VSAM files have retained locks and need recovery actions from DFSMStvs to back out the 
in-flight URs. Unfortunately, there are no filter keywords to extract only the data sets 
associated with retained locks; you need to execute the SHCDS LITDS command against 
each data set associated to your application and find which ones have retained locks by 
scanning the report output.

Figure 14-9   Extract from IDCAMS SHCDS LISTDS report

After locating all the information, we restarted DFSMStvs; see Example 14-7. In our system, 
DFSMStvs asks for confirmation on the type of start, cold or warm; this occurs because we 
specified a startup option of COLD in our parmlib member. 

Example 14-7   DFSMStvs syslog at restart time

IGW865I TRANSACTIONAL VSAM INITIALIZATION HAS STARTED.                 

*024 IGW879A TRANSACTIONAL VSAM COLD START REQUESTED  REPLY 'COLD', 
'WARM', OR 'DISABLE'                                               

R 24,WARM                                                             
IEE600I REPLY TO 024 IS;WARM                                          
IGW860I TRANSACTIONAL VSAM HAS SUCCESSFULLY REGISTERED WITH RLS       
IXL014I IXLCONN REQUEST FOR STRUCTURE LOG_IGWLOG_001 
WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0014                          
CONNECTOR NAME: IXGLOGR_#@$2 CFNAME: FACIL04                          
.........
.........
IGW865I TRANSACTIONAL VSAM INITIALIZATION IS COMPLETE.                  
IGW882I 9 INFLIGHT UNITS OF RECOVERY WERE RECONSTRUCTED                 
TRANSACTIONAL VSAM  LOGSTREAM #@$C.CICSVR.LOG001                        
SYSTEM NAME:              #@$2                                          
TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV002                             
IGW866I TRANSACTIONAL VSAM RESTART PROCESSING IS COMPLETE.        
...................................
....................................

 

 

 

160 Systems Programmer’s Guide to RRS



 

You can verify that in-flight URIDs have been recovered by looking at the RRS panels, or by 
checking for the following messages:

IGW10103I JOB TVS001C STEP G001 120                
UNIT OF RECOVERY BA8D9AE87E7406E80000612F01030000  
FAILED. BACKOUT WAS SUCCESSFUL 

These batch jobs can now be restarted from their last committed syncpoint.

 

 

 

Chapter 14. DFSMStvs 161



 

 

 

 

162 Systems Programmer’s Guide to RRS



 

Related publications

The publications listed in this section are considered particularly suitable for a more detailed 
discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” on page 163. 
Note that some of the documents referenced here may be available in softcopy only. 

� System Programmer’s Guide to z/OS System Logger, SG24-6898

� DFSMStvs Application Migration Guide, SG24-6072

� WebSphere for z/OS V5 Connectivity Handbook, SG24-7064

Other publications
These publications are also relevant as further information sources:

� z/OS MVS Initialization and Tuning Reference, SA22-7592

� z/OS V1R4 MVS Planning: APPC Management, SA22-7599

� z/OS MVS Programming: Resource Recovery, SA22-7616

� z/OS MVS Setting Up a Sysplex, SA22-7625

� IMS/ESA V8 Admin Guide: Transaction Manager, SC26-8014

� OTMA Guide and Reference, SC26-8743

� CICS Recovery and Restart Guide, SC33-1698

� CICS Intercommunication Guide, SC33-1695

� CICS Application Programming Guide, SC33-1687

� CICS External Interface Guide, SC33-1944

� OS/390 MVS Planning: APPC/MVS Management, GC28-1807

� DB2 for OS/390 Application Programming and SQL Guide, SC26-8958

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft 
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at 
this Web site: 

ibm.com/redbooks

 

 

 

© Copyright IBM Corp. 2004. All rights reserved. 163

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/


 

 

 

 

164 Systems Programmer’s Guide to RRS



 

Index

Numerics
2-phase commit

sample   11

A
ACID   14
APPC   138
APPL definition   139
atomic   21

B
backout   19

DFSMS flow   147

C
cascaded transaction

definition   26
CEMT command   111
CICS

EXCI   15, 106
transaction types   104
two-phase commit   14

commit   19
DFSMS flow   146

connector
CICS   78
DB2   79
IMS   76
MQ   81

context
differences   18

Coupling Facility
sizing   59

CSQBRSSI   130
CSQBRSTB   130
CTG   78
CTG Gateway   79

D
DASDONLY   42
DB2

JDBC driver   96
restart   97
RRS attach facility   94
sample scenarios   98
Stored Procedures   95

Display SMS   154
distributed syncpoint   25
distributed syncpoint resource manager   25
distributed unit of work

CICS   14
DRDA   15

 

 

 

© Copyright IBM Corp. 2004. All rights reserved.
DSRM   25
DUPLEXMODE   42

E
ECI   79
exploiters   7

H
HLQ   39, 42

I
IMS

APPC   117
OTMA   121
resource adapter   117
sample scenarios   126
shared queue   121

IMS connect   76
in-doubt   10, 148
ISPF panel   48

J
J2EE

terminology   74
J2EE Connector Architecture   75
JCA   78
JDBC   75
JDBC driver

Type 1   80, 96
Type 2   80, 96
Type 3   80, 96
Type 4   80, 96

JMS   75, 130

L
local JDBC driver   80
log stream

availability considerations   58
AVGBUFSIZE   37
CF definitions   35
CFRM policy   35
content   32
definition   35
DFSMS definitions   35
DUPLEXMODE   58
HIGHOFFLOAD   39
logger definitions   36
LOWOFFLOAD   39
LS_SIZE   40
MAXBUFSIZE   37
offloading   59
performance considerations   59
 165



 

SHAREOPTIONS(3,3)   35
sizing   34

CF Sizer tool   34
SMF type 88   34
SMS constructs   35
STG_DUPLEX   58
STG_DUPLEX=(YES)   40
STG_SIZE   40
System Logger policy   35
types   35

log takeover   62
logging group   33, 62
logon procedure   43

M
MAXBUFSIZE   42
multisystem cascaded transactions   26

N
native context   17
non-conversational   104

O
ODBA   116
Open Database Access   116
Open Transaction Manager Access   121
OTMA   121

P
peer recovery   153
privately-managed context   17
protected conversations   138

APPC   139
protected resources   6
pseudo-conversational   104

R
recovery

peer-level   64
recovery manager

CICS   14
Redbooks Web site   163

Contact us   x
resource manager

definition   6
restart   63
restart restrictions   63
startup   63

restart   123
multiple resource managers   64
restrictions   63
sample   66
sample scenario with DB2   66

restart processing   62
RRS

ATRRRS procedure   43
automation   43

cold start   47
configuration   32
context services   17
exploiters   ix, 7, 172
failure   82, 109, 124, 131, 140, 150
IEFSSN definition   42
invocation   18
ISPF panels   43
log streams   32
registration services   16
security definition   44
services   16
SMF records   60
startup   46
warm start   47
WebSphere Application Server for z/OS   75
Workload Manager definition   42

RRSAF   94

S
SDSRM   25, 76
server distributed syncpoint resource manager   25
services

context services   17
registration services   16

setup   32
SIT   110
SMF 70-78   60
SMF 88   60
SRRBACK   15, 94
SRRCMIT   15, 94
staging data set size

sizing   59
STG_DUPLEX   42
Stored Procedures   95
SYNCLEVEL=CONFIRM   138
SYNCLEVEL=NONE   138
SYNCLEVEL=SYNCPT   138
syncpoint   13, 105

atomic   20
syncpoint coordinator   19, 24
syncpoint manager   ix, 6, 172

T
transaction

ACID   5
ACID definition   5
atomic   4–5
consistent   5
definition   5
durable   5
isolated   5

two-phase commit   10
CICS   14
DB2   15
definition   6
distributed environment   24
IMS   15
legacy resource managers   13

 

 

 

166 Systems Programmer’s Guide to RRS



 

phase 1   10, 21
phase 2   10
RRS   19
WebSphere Application Server   75

U
universal JDBC driver   80

V
VARY SMS   154

W
WebSphere Application Server

adapters   82
CICS connectors   78
DB2 connectors   79
IMS connectors   76
local attachment   77
MQ connector   81

WebSphere Application Server for z/OS
connectors   76
RRS exploitation   75

 

 

 

 Index 167



 

 

 

 

168 Systems Programmer’s Guide to RRS



(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

System
s Program

m
er’s Guide to Resource Recovery Services (RRS)  

 

 

 

 



 

 

 

 



 

 

 

 



®

SG24-6980-00 ISBN 0738490768

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL 
INFORMATION BASED ON 
PRACTICAL EXPERIENCE

IBM Redbooks are developed 
by the IBM International 
Technical Support 
Organization. Experts from 
IBM, Customers and Partners 
from around the world create 
timely technical information 
based on realistic scenarios. 
Specific recommendations 
are provided to help you 
implement IT solutions more 
effectively in your 
environment.

For more information:
ibm.com/redbooks

Systems Programmer’s 
Guide to Resource 
Recovery Services (RRS)

Managing, optimizing 
and sizing the RRS 
environment

Restart and recovery 
with RRS

How exploiters can 
get the most out of 
RRS

This IBM Redbook gives you a broad understanding of the Resource Recovery 
Services (RRS) environment. RRS provides a global syncpoint manager that 
any resource manager on z/OS can exploit. It enables transactions to update 
protected resources managed by many resource managers.

RRS is increasingly becoming a prerequisite for new resource managers, and 
for new capabilities in existing resource managers. Rather than having to 
implement their own two-phase commit protocol, these products can use the 
support provided by RRS. 

Since older transaction managers like CICS already offered many of the 
benefits of RRS for processing their own data, not many people rushed to 
exploit RRS when it was first introduced. However, as more transaction 
managers have become RRS resource managers, and as the complexity of the 
exchanges of transactional data increases, more and more systems and 
application programmers will need to use RRS. 

This redbook provides information that will help you install, tailor, and manage 
the RRS environment. It covers RRS exploiters, helping you to understand the 
connections between RRS and its exploiters, how they work together, and how 
the installation should behave in recovery/restart situations.

Back cover

 

 

 

 

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/ 

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Resource Recovery Services (RRS) introduction and concepts
	Chapter 1. Introduction to Resource Recovery Services (RRS)
	1.1 Transactions
	1.2 Resource managers and protected resources
	1.3 The role of Resource Recovery Services (RRS)
	1.3.1 Who uses RRS


	Chapter 2. Two-phase commit and RRS
	2.1 Introduction to two-phase commit
	2.2 Two-phase commit as supported by legacy resource managers
	2.2.1 CICS
	2.2.2 IMS
	2.2.3 DB2

	2.3 How RRS works
	2.3.1 Registration services
	2.3.2 Context services
	2.3.3 RRS invocation

	2.4 How two-phase commit works with RRS
	2.5 Summary

	Chapter 3. Distributed RRS
	3.1 Distributed two-phase commit
	3.1.1 RRS distributed syncpoint support
	3.1.2 Multisystem cascaded transactions


	Part 2 Implementing and managing RRS
	Chapter 4. Implementing RRS
	4.1 RRS Implementation overview and planning
	4.2 Define the logging environment
	4.2.1 RRS logging group name
	4.2.2 Log stream characteristics
	4.2.3 RRS log stream structure sizing
	4.2.4 Define the RRS log streams

	4.3 Define the RRS infrastructure
	4.3.1 WLM definitions
	4.3.2 RRS subsystem definitions
	4.3.3 Define RRS procedure
	4.3.4 RRS automation
	4.3.5 Define RRS panels to ISPF
	4.3.6 Define RRS SAF authorization
	4.3.7 Define RRS component trace


	Chapter 5. RRS operations
	5.1 Starting RRS
	5.1.1 RRS warm start
	5.1.2 RRS cold start

	5.2 Stopping RRS
	5.3 Using RRS panels

	Chapter 6. RRS performance and availability
	6.1 Availability considerations for RRS log streams
	6.2 Performance considerations of RRS log streams
	6.2.1 RRS performance monitoring


	Chapter 7. RRS restart and recovery
	7.1 RRS restart
	7.1.1 RRS log takeover

	7.2 Resource manager restart
	7.2.1 Resource manager startup sequence
	7.2.2 Resource Manager restart restrictions
	7.2.3 Example of resource manager restart within the same RRS logging group
	7.2.4 Example of resource manager restart outside the same RRS logging group
	7.2.5 Sample DB2/MQ restart scenario with RRS


	Part 3 RRS exploiters
	Chapter 8. WebSphere Application Server for z/OS
	8.1 Introduction
	8.2 J2EE terminology
	8.3 RRS exploitation
	8.4 Connectors for JDBC, JMS and JCA
	8.4.1 IMS connectors
	8.4.2 CICS connectors
	8.4.3 DB2 connector
	8.4.4 WebSphere MQ connector
	8.4.5 Connector summary table
	8.4.6 RRS versus XA resource adapters

	8.5 Restart and recovery issues with RRS
	8.5.1 RRS failure
	8.5.2 Failure and restart
	8.5.3 Peer restart and recovery

	8.6 Example scenarios
	8.6.1 Application updating CICS and IMS using RRS connectors
	8.6.2 Application updating CICS and IMS with RRS and XA connectors
	8.6.3 Application backout updating CICS and IMS with RRS and XA connectors


	Chapter 9. DB2 for z/OS
	9.1 DB2 RRS requirements
	9.1.1 DB2 RRS Attach facility
	9.1.2 DB2 Stored Procedures
	9.1.3 DB2 JDBC/SQLJ driver for OS/390
	9.1.4 DB2 Universal JDBC/SQLJ driver

	9.2 DB2 restart and recovery with RRS
	9.2.1 DB2 restart if RRS is unavailable
	9.2.2 DB2 restart on another system

	9.3 Sample scenarios for DB2 using RRS
	9.3.1 Normal commit processing scenario


	Chapter 10. CICS Transaction Server
	10.1 CICS RRS requirements
	10.1.1 Working in CICS
	10.1.2 Connecting to CICS via EXCI

	10.2 CICS restart and recovery with RRS
	10.2.1 RRS failure
	10.2.2 CICS restart
	10.2.3 Operator commands
	10.2.4 CICS example


	Chapter 11. IMS
	11.1 How IMS/ESA exploits RRS
	11.2 Connecting to IMS/ESA
	11.2.1 ODBA
	11.2.2 APPC/IMS
	11.2.3 OTMA

	11.3 IMS/ESA restart and recovery with RRS
	11.3.1 RRS failure while IMS is active
	11.3.2 IMS restart when RRS is not available
	11.3.3 IMS restart when RRS has been cold-started
	11.3.4 IMS restart on a different system

	11.4 IMS/ESA sample scenario using RRS

	Chapter 12. WebSphere MQ for z/OS
	12.1 WebSphere MQ RRS requirements
	12.1.1 WebSphere MQ and DB2 stored procedures
	12.1.2 WebSphere MQ JMS interface

	12.2 WebSphere MQ restart and recovery issue with RRS
	12.2.1 RRS failure when MQ is running
	12.2.2 WebSphere MQ restart if RRS is unavailable
	12.2.3 WebSphere MQ restart on another system

	12.3 Sample scenarios for WebSphere MQ using RRS
	12.3.1 Normal commit processing scenario


	Chapter 13. APPC/MVS
	13.1 APPC/MVS RRS requirements
	13.1.1 Transaction flow using APPC/MVS protected conversations
	13.1.2 APPC/MVS system requirements for protected conversations
	13.1.3 Managing APPC/MVS resources for protected conversations

	13.2 APPC/MVS application restart and recovery with RRS
	13.2.1 RRS failure while the APPC/MVS application is active

	13.3 APPC/MVS sample scenario with RRS

	Chapter 14. DFSMStvs
	14.1 DFSMtvs features that exploit RRS
	14.1.1 Resource recovery participants
	14.1.2 Commit flow with DFSMStvs
	14.1.3 Backout flow with DFSMStvs
	14.1.4 Handling of undo records when in-doubt with DFSMStvs
	14.1.5 Handling long-running units of recovery with DFSMStvs

	14.2 TVS restart and recovery with RRS
	14.2.1 RRS failure
	14.2.2 DFSMStvs restart
	14.2.3 DFSMStvs peer restart
	14.2.4 Operator commands

	14.3 DFSMStvs examples

	Related publications
	IBM Redbooks
	Other publications
	How to get IBM Redbooks

	Index
	Back cover

